Skip to main content
Contents
Dark Mode Prev Up Next
\(
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 2.2 algebra and convergence
We already saw one compatibility between convergence and algebra, in the form of
Proposition 2.1.4 . Here are some others, which we’ll prove in class. They’re recorded here just to make sure we’ve got them all in one place.
Proposition 2.2.1 .
Assume that
\(X\to L\) and
\(c\in\mathbb{R}\text{.}\) Define
\(cX=(cy_n)_{n\in\mathbb{N}}\text{.}\) Then
\(cX\to cL\text{.}\)
Proposition 2.2.2 .
Assume that
\(X\to L\) and
\(Y\to M\text{.}\) Define
\(XY=(x_ny_n)_{n\in\mathbb{N}}\text{.}\) Then
\(XY\to LM\text{.}\)
Proposition 2.2.3 .
Assume that
\(X\to L\) and
\(Y\to M\text{.}\) Further, assume that
\(y_n\neq 0\) for all
\(n\text{,}\) and
\(M\neq 0\text{.}\) Define
\(\frac{X}{Y}=\left(\frac{x_n}{y_n}\right)_{n\in\mathbb{N}}\text{.}\) Then
\(\frac{X}{Y}\to \frac{L}{M}\text{.}\)
Definition 2.2.4 .
The \(K\) -tail of the sequence \(X=(x_n)_{n\in\mathbb{N}}\) is the sequence
\begin{equation*}
X_{(K)}=(x_{n+K})_{n\in\mathbb{N}}
\end{equation*}
Checkpoint 2.2.5 .
Let
\(X=\left(\frac{1}{n}\right)_{n\in\mathbb{N}}\text{.}\) What is
\(X_{(12)}\text{?}\)
Proposition 2.2.6 .
The following are equivalent:
\(\displaystyle X\to L\)
There is a \(K\in\mathbb{N}\) so that \(X_{(K)}\to L\text{.}\)
For any \(K\in\mathbb{N}\text{,}\) \(X_{(K)}\to L\)
Proposition 2.2.7 . Two Officers and a Drunk.
Let
\(X,Y,Z\) be sequences so that
\(x_n\leq y_n\leq z_n\text{.}\)
If
\(X\to L\) and
\(Z\to L\text{,}\) then
\(Y\to L\text{.}\)