Definition 2.1.1.
We say that the sequence \(X=\left(x_n\right)_{n\in\mathbb{N}}\) converges to \(L\) if
in symbols,for every \(\epsilon\gt 0\) there is \(K\in\mathbb{N}\) so that \(n\gt K\) guarantees \(\lvert x_n-L\rvert \lt \epsilon\text{.}\)
\begin{equation*}
\forall \epsilon\gt 0,\ \exists K\in\mathbb{N}:\ n\gt K\Rightarrow \lvert x_n-L\rvert \lt \epsilon
\end{equation*}