Definition 4.1.1.
Let \(f:A\to \mathbb{R}\) be a function defined on a subset of \(\mathbb{R}\) and \(c\) a limit point for \(A\text{.}\) We write
\begin{equation*}
\displaystyle\lim_{x\to c}f(x)=L
\end{equation*}
if
\begin{equation*}
\forall \epsilon\gt 0,\ \exists \delta\gt 0:\ 0\lt\lvert x-c\rvert\lt \delta\Rightarrow \lvert f(x)-L\rvert\lt \epsilon\ \ \ .
\end{equation*}