Skip to main content

Section 7.2 Properties of the Definite Integral

Remembering that the integral is supposed to represent an area, let’s show that integrals act like areas.

Checkpoint 7.2.1.

Make a list of all the formal properties of area that you can think of. Here’s an example: area is translation-invariant, i.e., if you slide a region around the plane, its area does not change.

Proof.

Consider any partition \(P=\{x_0,\ldots,x_n\}\text{,}\) consider
\begin{equation*} \displaystyle U(f+g;P)=\sum_{k=0}^{n-1}\sup_{[x_k,x_{k+1}]}(f+g) \left(x_{k+1}-x_k\right)\leq \sum_{k=0}^{n-1}\left(\sup_{[x_k,x_{k+1}]}f+\sup_{[x_k,x_{k+1}]}g\right) \left(x_{k+1}-x_k\right)=U(f;P)+U(g;P)\ \ \ . \end{equation*}
Therefore, \(\displaystyle\overline{\int_{[a,b]}(f+g)(x)\ dx \leq U(f;P)+U(g;P)}\) for any partition.
Now, given \(\epsilon\gt 0\text{,}\) there are partitions \(P_1\) so that \(\displaystyle U(f;P_1)\lt \overline{\int_{[a,b]}f(x)\ dx}+\frac{\epsilon}{2}\text{,}\) and \(P_2\) so that \(\displaystyle U(g;P_1)\lt \overline{\int_{[a,b]}g(x)\ dx}+\frac{\epsilon}{2}\text{.}\) Setting \(P_\epsilon=P_1\cup P_2\text{,}\) we have that \(P_\epsilon\) refines both \(P_1\) and \(P_2\text{.}\) Therefore,
\begin{equation*} \displaystyle\overline{\int_{[a,b]}(f+g)(x)\ dx}\leq U(f;P_\epsilon)+U(g;P_\epsilon)\leq U(f;P_1)+U(g;P_2)\lt \overline{\int_{[a,b]}f(x)\ dx}+\frac{\epsilon}{2}+\overline{\int_{[a,b]}g(x)\ dx} +\frac{\epsilon}{2}\ \ . \end{equation*}
Since \(\epsilon\) is arbitrary, this means
\begin{equation*} \overline{\int_{[a,b]}(f+g)(x)\ dx}\leq \overline{\int_{[a,b]}f(x)\ dx}+\overline{\int_{[a,b]}g(x)\ dx}\ \ \ . \end{equation*}
A similar argument shows that
\begin{equation*} \underline{\int_{[a,b]}(f+g)(x)\ dx}\geq \underline{\int_{[a,b]}f(x)\ dx}+\underline{\int_{[a,b]}g(x)\ dx}\ \ \ . \end{equation*}
Now, because \(f\) and \(g\) are integrable, we can replace their integrals superior and inferior with their respective integrals to obtain
\begin{equation*} \displaystyle\int_{[a,b]}f(x)\ dx + \int_{[a,b]}g(x)\ dx \leq \underline{\int_{[a,b]}(f+g)(x)\ dx}\leq \overline{\int_{[a,b]}g(x)\ dx}\leq \int_{[a,b]}f(x)\ dx+\int_{[a,b]}g(x)\ dx \end{equation*}
which finishes the proof.
In the proof of TheoremΒ 7.2.2, we brushed up against this result, which will be pretty handy going forward:

Proof.

First, we’ll prove that \(f\) is integrable on \([a,c]\) and \([c,b]\text{.}\) Given \(\epsilon\gt 0\text{,}\) by the Cauchy Criterion, there is \(P_\epsilon\) so that \(U(f;P_\epsilon)-L(f;P_\epsilon)\lt \epsilon\text{.}\) Consider \(P=P_\epsilon\cup\{c\}\text{,}\) which naturally decomposes into a partition \(P'\) of \([a,c]\) and a partition \(P''\) of \([c,b]\text{.}\) We have
\begin{equation*} U(f;P')-L(f;P')\leq U(f;P)-L(f;P)\leq U(f;P_\epsilon)-L(f;P_\epsilon)\lt\epsilon \end{equation*}
and similarly,
\begin{equation*} U(f;P'')-L(f;P'')\leq U(f;P)-L(f;P)\leq U(f;P_\epsilon)-L(f;P_\epsilon)\lt\epsilon\ \ , \end{equation*}
so that by the Cauchy Criterion, \(f\) is integrable on each of \([a,c]\) and \([c,b]\text{.}\)
Now let’s establish the claimed formula for \(\displaystyle\int_{[a,b]}f(x)\ dx\text{.}\)
Let \(\epsilon\gt 0\text{.}\) By the epsilon criterion, there are partitions \(P_{\epsilon,+}',P_{\epsilon,-}'\) of \([a,c]\) and \(P_{\epsilon,+}'',P_{\epsilon,-}''\) of \([c,b]\) so that
\begin{gather*} \displaystyle\underline{\int_{[a,c]}f(x)\ dx}-\frac{\epsilon}{2}\lt L(f;P_{\epsilon,-}')\leq \underline{\int_{[a,c]}f(x)\ dx}\\ \displaystyle\overline{\int_{[a,c]}f(x)\ dx} \leq\displaystyle U(f;P_{\epsilon,+}')\lt \overline{\int_{[a,c]}f(x)\ dx}+\frac{\epsilon}{2}\\ \displaystyle\underline{\int_{[c,b]}f(x)\ dx}-\frac{\epsilon}{2}\lt L(f;P_{\epsilon,-}'')\leq \underline{\int_{[c,b]}f(x)\ dx}\\ \displaystyle\overline{\int_{[c,b]}f(x)\ dx} \leq\displaystyle U(f;P_{\epsilon,+}'')\lt \overline{\int_{[c,b]}f(x)\ dx}+\frac{\epsilon}{2} \end{gather*}
Setting \(P_\epsilon'=P_{\epsilon,-}'\cup P_{\epsilon,+}'\) and \(P_\epsilon''=P_{\epsilon,-}''\cup P_{\epsilon,+}''\text{,}\) observe that \(P_\epsilon=P_\epsilon'\cup P_\epsilon''\) is a partition of \([a,b]\) so that \(U(f;P_\epsilon)=U(f;P_\epsilon')+U(f;P_\epsilon'')\) and \(L(f;P_\epsilon)=L(f;P_\epsilon')+L(f;P_\epsilon'')\text{.}\)
Therefore,
\begin{equation*} \displaystyle L(f;P_\epsilon)-\epsilon \leq \int_{[a,c]}f(x)\ dx + \int_{[c,b]}f(x)\ dx \leq U(f;P_\epsilon)+\epsilon \end{equation*}
which gives us the desired formula.

Proof.

Define the positive part and negative part of \(f\) by
\begin{align*} f_+(x)=\begin{cases}f(x)& \text{ if }f(x)\gt 0\\0&\text{ if }f(x)\leq 0\end{cases}\\ f_-(x)=\begin{cases}0& \text{ if }f(x)\gt 0\\-f(x)&\text{ if }f(x)\leq 0\end{cases} \end{align*}
Notice that \(f(x)=f_+(x)-f_-(x)\) and \(\lvert f(x)\rvert=f_+(x)+f_-(x)\text{.}\)

Proof.

This follows from the Cauchy Criterion and the fact that for any interval, \(\displaystyle \sup_I f_+ - \inf_I f_+\leq \sup_I f-\inf_I f\text{.}\)
Now because \(f_+\) and \(f_-\) are integrable, their sum \(\lvert f\rvert\) is also.
The claimed inequality follows by noting that \(f_-\) is nonnegative.

Checkpoint 7.2.7.