Notice that for each
\(x\in V\text{,}\) \((f_n(x))_{n\in\mathbb{N}}\) is a Cauchy sequence in
\(V\text{.}\) Therefore
\(\left(f_n(x)\right)_{n\in\mathbb{N}}\) converges to some element of
\(V\text{,}\) which we’ll call
\(f(x)\text{.}\)
Our job now is to prove that the convergence
\(f_n\to f\) is in fact uniform.
Given \(\epsilon\gt 0\text{,}\) there is \(N\in\mathbb{N}\) so that \(m,n\gt N\) guarantees \(d\left(f_n(x),f_m(x)\right)\rVert\lt \frac{\epsilon}{2}\text{.}\) For any \(m,n\gt N\text{,}\) we have
\begin{equation*}
d\left(f(x),f_n(x)\right)\leq d\left(f(x),f_m(x)\right)+d\left(f_m(x),f_n(x)\right)\lt \frac{\epsilon}{2}\ \ \ .
\end{equation*}
Now fixing \(x\text{,}\) we can take the limit \(m\to\infty\text{;}\) then \(d\left(f(x),f_n(x)\right)\leq \frac{\epsilon}{2}\lt \epsilon\text{.}\)
Because
\(N\) does not depend on
\(x\text{,}\) this shows that
\(f_n\rightrightarrows f\text{.}\)