Skip to main content

Section 5.4 Continuous functions and Compact Sets

Now we’re ready to see how continuous functions interact with compactness.

Example 5.4.3.

Here are some functions which lack either a maximum or a minimum on their domains:
  1. \(f:(0,1]\to \mathbb{R}\) given by \(f(x)=\frac{1}{x}\)
  2. \(g:[0,1]\to\mathbb{R}\) given by \(g(x)=\begin{cases}2-x&\text{ if }x\lt \frac{1}{2}\\x+3&\text{ if }x\gt \frac{1}{2}\end{cases}\)
  3. \(h:[1,\infty)\to\mathbb{R}\) given by \(h(x)=\frac{1}{x}\)

Checkpoint 5.4.4.

In \(\mathbb{R}^m\text{,}\) the unit sphere \(S^{m-1}\) (with respect to the 2-norm) is compact. (We showed this in homework.)
For any other \(p\)-norm \(\lVert\cdot\rVert_p\text{,}\) we can see from the formula that \(\lVert\cdot\rVert_p:\mathbb{R}^m\to \mathbb{R}\) is continuous.
Therefore, \(\lVert \cdot\rVert_p\) achieves a maximum and a minimum on \(S^{m-1}\text{.}\)
Use this to explain why every \(p\)-norm on \(\mathbb{R}^m\) is equivalent to \(\lVert\cdot\rVert_2\text{.}\)

Definition 5.4.5.

We call a function \(f:A\to V\) uniformly continuous if
\begin{equation*} \forall \epsilon\gt 0,\exists \delta\gt 0:\forall x,y\in A, d(x,y)\lt \delta\Rightarrow d(f(x),f(y))\lt\epsilon\ \ . \end{equation*}

Checkpoint 5.4.6.

Checkpoint 5.4.8.

Give a direct proof of TheoremΒ 5.4.7.
Hint.
Given \(\epsilon\gt 0\text{,}\) for each \(x\in A\) there is \(\delta_x\) so that \(d(x,y)\lt \delta_x\Rightarrow d(f(x),f(y))\lt \frac{1}{2}\epsilon\text{.}\) This gives an open cover of \(A\) by balls: \(\mathcal{U}=\left\{B_{\frac{1}{2}\delta_x}(x)\middle\vert x\in A\right\}\text{.}\)