Consider the limit
\begin{equation*}
\displaystyle \limsup \sqrt[k]{\lvert (k+1)a_{k+1}\rvert}=\limsup \sqrt[k]{k+1} \sqrt[k]{\lvert a_{k+1}}
\end{equation*}
Lemma 8.4.7.
Proof.
Weโll use the so-called log trick. Technically speaking, we havenโt defined logarithms yet; letโs fix that:
\begin{equation*}
\log x = \int_{[1,x]}\frac{1}{t}\ dt
\end{equation*}
Itโs obvious that this function is continuous (thatโs a fact we proved in class); and a quick argument shows that it satisfies the two nice properties:
The second property implies that any
\(\epsilon\gt 0\text{,}\) there is
\(K\) so that
\(x\gt K\) guarantees
\(\log x\lt \epsilon x\text{.}\)
The log trick is to compute a limit by taking its log, exploiting these algebraic properties, then delogging after the limit is obtained. Here, that works out as:
\begin{align*}
\lim \log\left(\sqrt[k]{k+1}\right)&=\lim \frac{1}{k}\log(k+1)\\
&=0
\end{align*}
by the observation that \(\log x\) grows much more slowly than \(x\text{.}\) Therefore, \(\sqrt[k]{k+1}\) tends to a number \(L\) with \(\log L=0\text{.}\) The only such number is \(L=1\text{.}\)
Now this means that, given any
\(\epsilon\gt 0\text{,}\) for large enough
\(k\text{,}\) \(\sqrt[k]{\lvert a_{k+1}}-\epsilon\lt \sqrt[k]{\lvert (k+1)a_{k+1}\rvert}\lt \sqrt[k]{\lvert a_{k+1}}+\epsilon\text{,}\) so
\(\limsup \sqrt[k]{\lvert (k+1)a_{k+1}\rvert}= \limsup \sqrt[k]{\lvert a_{k+1}\rvert}\text{.}\)
Now we need to compute
\(\limsup \sqrt[k]{\lvert a_{k+1}\rvert}\text{.}\) First, observe that weโre very nearly there, because:
\begin{equation*}
\limsup \sqrt[k]{\lvert a_{k+1}\rvert}= \limsup \left(\sqrt[k+1]{\lvert a_{k+1}\rvert}\right)^{\frac{k+1}{k}}
\end{equation*}
\(\frac{k+1}{k}\text{.}\)
\begin{equation*}
\log\left(\sqrt[k+1]{\lvert a_{k+1}\rvert}\right)^{\frac{k+1}{k}}=\frac{k+1}{k} \log\sqrt[k+1]{\lvert a_{k+1}\rvert}
\end{equation*}
\(\frac{k+1}{k}\to 1\text{,}\)
\begin{equation*}
\limsup \sqrt[k]{\lvert (k+1)a_{k+1}\rvert}= \limsup \sqrt[k]{\lvert a_{k+1}\rvert}=\limsup \sqrt[k+1]{a_{k+1}}\ \ \ .
\end{equation*}