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Abstract 

While the study of traditional category theory is focused on certain abstract categories and the 
functors between them, the study of concrete categories is aimed to find the properties of various 
structures on categories. A crucial viewpoint is that every faithful functor can be seen as a 
structure over the base category, so the study of structures changes into the study of faithful 
functors. 
Two of the important kinds of structures over categories are topological structures and algebraic 
structures, but such a saying is only an intuitive one. In my thesis I try to work out what is the 
essence of topological structures and algebraic structures. They both help greatly for us 
understanding the base categories, and some nice properties are reflected or preserved by these 
two kinds of functors. 
 
 
摘要 

传统的范畴学的研究集中在某些抽象范畴，和它们之间的函子，但是对具体范畴的研究却在

于探寻范畴之上的结构。一个关键的观点是，任何一个忠实函子都可以被认为是其上域范畴

上的一种结构，这样的话对范畴上结构的研究就变成了对忠实函子的研究。 
范畴上两种最重要的结构是拓扑结构和代数结构，但是这仅仅是一种直观的说法。这篇论文

里我将指出拓扑结构和代数结构两个概念的精华所在。这两种函子都能帮助我们更好地理解

它们的上域范畴，而且它们能反映或保持许多优良的性质。
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Prerequisite 
 

Throughout the thesis, once the reader is confronted with an undefined term or category, please 
refer to [ACC]. The theory for sets and classes here we use is from [ACC]. All the familiar 
concepts are as usually used. For every category, its objects constitute a class, and hom(a, b) is a 
set for arbitrary objects a, b. 
We here use bold letters for categories: A, B, C, … ; and same type of letters for well-known 
categories: Set, Grp, Top, … . We use capital letters for functors: F, T, U, … . We use lowercase 
italics for objects: a, b, c, … ; and same type of letters for morphisms: f, g, h, … . 

Definition 1.1  Let X be a category. A concrete category over X is a pair (A, U), where A is a 
category, and U: A →X is a faithful functor. U is called the forgetful functor or underlying 
functor of the concrete category. X is called the base category for (A, U). A concrete category 
over Set is called a construct. 

Remark 1.2  If (A, U) is concrete over X, since faithful functors are injective on hom-sets, we 
usually assume that homA(a, b) is a subset of homX(Ua, Ub) for each pair (a, b) of A-objects. 
Even though different hom-sets need to be disjoint, such convention never causes problems. Thus, 
we may express sentences like “for A-objects a, b, and X-morphism f : Ua→Ub, there exists a 
(necessarily unique) A-morphism a→b with U(a→b) is f ” by stating “f : Ua→Ub is an 
A-morphism (from a to b)”. 

Remark 1.3  Sometimes the underlying functor is obvious so that we will simply regard A, 
instead of (A, U), as a concrete category over X. In these cases the underlying object of an 
A-object a will sometimes be denoted by |a|; i.e., “|a|” will serve as a standard notation for 
underlying functors. 

Definition 1.4  Let (A, U) be concrete over X. The fibre of an X-object x is the preordered class 
consisting of all A-objects a with Ua = x , ordered by: a ≤ b iff idx: Ua→Ub is an A-morphism. 

Remark 1.5  Fibres need not be sets, though in most familiar concrete categories they are sets. 
Intuitively, the fibre of an X-object x can be viewed as the class of “structures” on x, where a ≤ b 
in the fibre means the structure a is “thinner” than b. The underlying functor from Top to Set 
provides a straightforward example. 

Definition 1.6  A source in category X is a pair  consisting of an X-object a and a 

family of X-morphisms f

( , ( ) )i i Ia f ∈

i : a→ai with domain a, indexed by some class I. 

Remark 1.7  The index class might be a non-empty set or an empty set. It can also be a proper 
class, i.e., a class that cannot be indexed by any set. We usually denote a source by notation such 
as (fi : a→ai)I . The dual notion of source is sink, which is often written like (gi : ai→a)I. 
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Remark 1.8  If  ( i
i i I

fS a a ) ∈= ⎯⎯→  is a source in A, and G : A→B is a functor, then GS 

represents the source G (G G )i
i i I

fa a ∈⎯⎯⎯→  in B. 

Definition 1.9  A diagram in category A is a functor D : J→A. Here category J is usually small 
or even finite, although this is not a must. 

Definition 1.10  A limiting cone of diagram D : J→A is a source  

in A which satisfies all the following: 
(1) For any J-morphism m : j

Obj( ) ( D )j
j

fS a j ∈= ⎯⎯→ J

1→j2, there is equation fj2 = Dm◦fj1 ; shortly speaking, S commutes 
with diagram D; and 

(2) For any source  in A which commutes with diagram D, there is a 

unique A-morphism k : a→b such that h

Obj( )( D )j
j

hT b j ∈= ⎯⎯→ J

j◦k = fj for all J-objectes j. Here k is usually called the 
connecting arrow of S and T. 
Note  In [CWM] Mac Lane use the term “cone” for both sources and sinks, while we adopt the 
terminology used in [ACC]. We sometimes use the terms “limit” or “limiting source” instead of 
“limiting cone”. 

Definition 1.11  A Colimiting cone of diagram D : J→A is a limiting cone of diagram Dop : 
Jop→Aop, which is a sink in A. “Limiting cone” and “colimiting cone” are dual concepts.
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Preface 

 

The idea of definitions of topological categories and algebraic categories arise from a basic 
viewpoint. That is, to regard an underlying functor from X to A as a structure over category A, 
which cannot be identified through A or X alone. Many structures can be decomposed into more 
basic ones, which often can be classified as “topological” or “algebraic”. The nature of a structure 
is reflected not so much in properties of its abstract category, but rather in properties of its 
underlying functor. 

Possibly the only topological category over Set in everybody’s mind is Top. hTop (topological 
spaces with arrows the homotopy classes of continuous maps), pTop (pointed topological spaces), 
Haus, or HComp are not topological over Set, theoretically. However, there are numerous 
familiar categories that are algebraic over Set, such as Grp, Ab, Rng, R-Mod, Mon (monoids), 
SGrp (semigroups), and all other algebraic systems <Ω, E>-Alg [CWM, page 124]. Underlying 
functors of all the above algebraic categories have left adjoints, which is equivalent to say “every 
algebraic system has a free object for an arbitrary set”, a non-trivial proposition [CWM, page 124]. 
Moreover, such underlying functors not only preserve limits, but create limits [CWM, page 112]. 
Therefore, we want to know the essence of similarity of these categories. Universal algebra is not 
a satisfying answer for two reasons. Firstly, the structure of algebraic system is not categorical; 
secondly, there are other categories not at all “algebraic” intuitively but have the same properties 
as algebraic categories, such as HComp. Recall that HComp has a left adjoint, i.e., Stone-Cech 
compactification of discrete spaces, and its underlying functor to Set creates limits; also see 
[CWM, Chapter VI, Section 9]. 

Although we may attempt to define “algebraic category” via monads [ACC, §20], such approach 
is also far from satisfactory because it still rely on the “structure” of the base category and because 
it is rather complicated. We cannot determine whether a functor is algebraic by means of monads, 
just as we cannot conclude two given topological spaces are not homeomorphic from failure to 
find homeomorphisms. 

An intuitive observation is “topology is soft, algebra is hard”. “Algebra is hard” probably because, 
once an algebraic structure is decided on a set, it will not allow any small-range change, since all 
the elements impose strong bondage upon each other, such as the binary operation in a group. 
“Topology is soft” because every element is removable in a topological space without being 
noticed, and with a given topological space we can modify the topology into an arbitrarily coarser 
or thinner one. 

The ugly but practical definitions thus come. 
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Topological Categories 
 

The evident model for topological categories over Set is Top, topological spaces with continuous 
maps.  

Our first observations focus on the fibres. On a given set a, there are many topologies. These 
topologies are not mutually irrelevant, but they constitute a complete lattice, where “be thinner 
than” works as the “≤” relation. That is, every fibre of Top over Set is a complete lattice. Here a 
complete lattice is a partially ordered class with a least upper bound and a greatest lower bound 
for every subclass. Concretely speaking: let Ω be the class composed of all topologies on a and let 
Σ be an arbitrary subclass of Ω, then there is a topology T1 in Ω with the following property: (1) T1 
is thinner than all topologies in Σ; and (2) among all such topologies in Ω that are thinner than all 
topologies in Σ, T1 is the thinnest one. Also, there exists a topology T2 in Ω with following 
property: (1) T2 is coarser than all topologies in Σ; and (2) among all such topologies in Ω that are 
coarser than all topologies in Σ, T1 is the coarsest one. 

Definition 2.1  A concrete category is called fibre-complete iff its fibres are complete lattices. 
Here complete lattices are allowed to be large. 

Proposition 2.2  Top over Set is fibre-complete. 

Our second observation goes beyond topologies on a single set, and considers topologies given by 
functions. Given set a, topological space b, and set function f : a→b, the initial topology on a is 
defined to be the coarsest topology that makes f continuous. The concept of final topology is dual 
to initial topology; given h : b→a, the final topology on a is defined to be the thinnest topology 
that makes f continuous. When more than one functions are considered, such as an I-indexed class 
of functions fi : a→bi with a a set and bi’s topological spaces, then initial topology on a can still be 
found, i.e. the coarsest topology that makes all fi’s continuous. The existence of initial and final 
topologies serves as another important feature of topological categories which leads to nice 
properties. Within our expectation, the notions of initiality and finality are categorical. 

Definition 2.3  Let (A, U) be concrete over X. An A-morphism f : a→b is called initial iff: for 
any A-object c and X-morphism h : |c|→|a|, that f◦h : |c|→|b| is an A-morphism implies that h is an 
A-morphism. An A-morphism g : a→b is called final iff: for any A-object c and X-morphism h : 
|b|→|c|, that h◦g : |a|→|c| is an A-morphism implies that h is an A-morphism. 

Definition 2.4  Let (A, U) be concrete over X. A source S =  is called initial 

iff: for any X-morphism h : |b|→|a| with (f

( i
i i I

fa a ∈⎯⎯→ )

i◦h)I all A-morphisms, h must be an A-morphism. Final 
sink is the dual notion for initial source. 

It seems that we copy the definitions word for word, from section on initial and final topologies of 
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some topology textbook, if we view A as Top and X as Set [GT, definition 4.15]. Not only Top 
but also lots of other familiar categories satisfy these requirements (fibre-completeness, existence 
of initial and final structures). For instance, PMet (pseudo-metric spaces with non-expanding 
maps [ACC, page 132]) over Set; Rel (relations with relation-preserving maps) over Set; Prost 
(pre-ordered sets with order-preserving maps) over Set; TopGrp (topological groups with 
continuous homomorphisms) over Grp, and other topological structures over other categories. 

Virtually fibre-completeness and existence of initial and final arrows suffice to claim whether a 
functor is topological, but general textbooks on categories do not use them as definition; instead, 
Herrlich expressed the definition in a quite succinct though very abstract way [ACC, Definition 
21.1]. I now exhibit the definition before explain some of its terms. The definitions of underlined 
words will follow immediately. 

Definition 2.5  A functor G : A→B is called topological iff every G-structured source        
(fi : b→Gai)I has a unique G-initial lift (f´i : a→ai)I . (Here “lift” means Gf´i = fi for all i.) 

Definition 2.6  Let G : A→B be a functor. A G-structured source is a pair (a, (fi, bi)I), with a an 
A-object and (fi, bi)I a family of pairs indexed by some class I, where for every i, bi is a B-object 

and  is an A-morphism. Such G-structured source is usually denoted by 

. If G is an underlying functor, we usually use the term structured source 

instead of G-structured source. 
G-structured sink and structured sink are their dual notions. 
When the index family I is a singleton set, we usually call the G-structured source a G-structured 
morphism (or G-structured arrow). Its dual notion is G-costructured morphism. 

Gi
i

fa ⎯⎯→ b

( G )i
i i I

fa b ∈⎯⎯→

Note  The G-structured source (fi : a→Gbi)I is not a source, since it contains information not only 
of Gbi’s but also of bi’s; however, their definitions are similar. 

Definition 2.7  Let G : A→B be a functor. A source S = (fi : a→ai)I is called G-initial iff: for 
each source (gi : b→ai)I in A with the same codomain of S and B-morphism h : Gb→Ga which 
satisfy Gfi◦h = Ggi for all i, there is a unique A-morphism h´ : b→a satisfying Gh´ = h and     
fi◦h´ = gi for all i. 
G-final sink is the dual notion. 

Remark 2.8  If G is an underlying functor, then the definition of G-initial source coincides with 
initial source. 

Remark 2.9  In the definition of topological functors, we do not require faithfulness; the reason 
is not that absence of such requirement may lead to greater generality, but that faithfulness can be 
deduced from the present definition. 

I now claim that a functor G is topological iff it is faithful, fibre-complete, and has initial and final 
structures for any base object. The “if” part is much easier than the “only if” part, so we try to 
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prove the “if” part first. 

Proposition 2.10 (Characterization of topological functors)  G : A→B is a functor. Then G is 
topological iff it satisfies all the following: 
(1) G is faithful; and 
(2) G is fibre-complete as a concrete functor; and 
(3) for any B–morphism f : b→|a| (a is an A–object), it has a (necessarily unique) initial lift, i.e., 
an initial A-morphism f´ : ab→a with Gf´ = f ; and 
(4) for any B–morphism g : |a|→b (a is an A–object), it has a (necessarily unique) final lift, i.e., a 
final A-morphism g´ : a→ab with Gg´ = g. 

Proof of the “if” part of Proposition 2.10 
Idea  We need to find initial lift for every G-structured sources (fi : b→|ai|)I . We are directed to 
find from the fibre of b the greatest one that makes every fi an A-morphism. If |a| = b, then fi : 
|a|→|ai| is an A-morphism iff |a| ≤ ‘the initial lift of fi : b→|ai|’. Therefore, it suffices to find the 
greatest one that is less than ‘the initial lift of fi : b→|ai|’ for all i in I. Fortunately, there is one such 
A-object because the fibre of b is a complete lattice. 
Proof  For every i, let fi : ci→ai be the initial lift of fi : b→|ai|. Then let cb be the greatest lower 
bound of {ci}I . For any i, since cb ≤ ci in the fibre of b, there exists hi : cb→ci with Ghi = idb . Thus 
the A-arrow hi◦fi : cb→ai is a lift of fi : b→|ai|. To show that fi : cb→ai is initial, suppose that 

 is a lift of (f( i
i i I

fc a ∈⎯⎯→ )

)i I

i : b→|ai|)I , then c ≤ ci for any i, hence c ≤ cb. That is, idb : c→cb is 

an A-morphism, so  is an initial lift of . For the fibre is a partially ordered class, 

initial lift is necessarily unique. 
Note  Property (4) is not used in the above proof, so the first three properties combined are 
sufficient to detect topological functors. 

( i
b i

fc a ∈⎯⎯→

The characterization of Proposition 2.10 shows excellent properties for topological functors, e.g. 
the existence of initial lifts for sources implies the existence of discrete structures on objects, and 
hence implies the existence of a left adjoint; and dually, the existence of final lifts for sinks 
implies the existence of indiscrete structures on objects, and hence implies the existence of a right 
adjoint. One result of such properties is that, as is well-known, U : Top→Set preserves limits and 
colimits. 

Although an intuitive characterization helps us understanding how the definition comes, there are 
two points yet to be explained in the proposition. First, it remains unknown why topological 
functors are faithful. Second, the characterization is self-dual, since faithfulness is self-dual, 
fibre-completeness is self-dual, and initiality and finality are dual, but Definition 2.5 is definitely 
not. 

Proposition 2.11  Topological functors are faithful. 
Proof  Let G : A→B be a topological functor. Assume that r, s : a→a´ are a parallel pair of 
A-morphisms, with Gr = Gs . Let I = Mor(A) be the class composed of all morphisms in A, and let 
the source S be (fi : Ga→Gai)I with fi = Gr and ai = Ga´ for all i. (Notice that i runs all over 
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morphisms in A.) Then S has a G-initial lift, say (gi : ao→ai)I . Define source T = (hi : a→ai)I to be: 

                
 ,   if  and  are composable and 

,   otherwise
i i

i
r g i g i

h
s

° s=⎧
= ⎨
⎩

 

Obviously Ghi = Ggi◦idGa for all i. Since (gi : ao→ai)I is G-initial, there is an A-morphism k: a→ao 
such that Gk = idGa and hi = gi◦k for all i. Since k is also an A-morphism, we know hk = gk◦k, so gk 
and k are composable. If gk◦k ≠ s, then by definition, hk = s, contradiction. So, the only possibility 
is gk◦k = s, then hk = gk◦k = r. So r = s. 
Note  This proof may be associated with Gödel’s proof of the incompleteness theorem and 
Cantor’s proof of the uncountability of real numbers, for they all use the “diagonal method”. 

Remark  Much of the strength of being topological lies in the fact that the G-structured sources 
are allowed to be large, as in the preceding proof, and such fact will be used frequently later on 
[ACC, remark 21.4]. From now on we prefer the notation “U : A→X” to “G : A→B”, because 
topological functors are faithful. 

Definition 2.12  A concrete category (A, U) over X is called topological iff U is topological. 

Proof of “topological functors are fibre-complete” 
For any fibre U-1(x) of topological functor U : A→X, and any subclass C of U-1(x), we need to 

find a greatest lower bound for C. For the structured-source in X,  where I 

is defined to be C and a

( | |x
i i I

idx a ∈⎯⎯⎯→ )

)

i = i for all I, there is a unique initial lift, say (fi : a→ai)I in A. Then by the 
definition of initiality, a is the greatest lower bound for C. By uniqueness of the initial lift, 
equivalent elements must be equal, so U-1(x) is not only a preordered class but also a 
partially-ordered class. 

Proposition 2.11  If (A, U) is topological over X, then (Aop, Uop) is topological over Xop. 
Idea  The claim is equivalent to “For a faithful functor U : A→X for which every structured 
source (fi : x→|ai|)I in X has a unique initial lift (f´i : a→ai)I , then every structured sink (fi : 
|ai|→x)I in X has a unique final lift (f´i : ai→a)I ”. If X is the category 1 (the category with only 
one object with its identity the only morphism), then the proposition will be like “For a 
partially-ordered class in which every subclass has a greatest lower bound, then every subclass has 
a least upper bound”, or shortly, a meet-complete partially-ordered class must be join-complete. 
Here “meet” stands for “great lower bound”, and “join” means “least upper bound”. Recall that 
the proof of this theorem relies on the fact, that for a subclass C, the meet of subclass C´ = 
{elements greater than all elements of C} is the join of C. Since “category” is a generalization of 
pre-ordered class, and “topological category” is a generalization of complete lattice, the following 
proof is merely a generalization of the preceding proof. 
Proof  We need to find a final lift for every structured sink (fi : |ai|→x)I in X. For such purpose, 

construct structured source S = ( j
j j J

gx c ∈⎯⎯→  consisting of all possible gj : x→|cj| such that 

the X-morphism gj◦fi : |ai|→|cj| is an A-morphism for all i. The U-structured source S has an initial 
lift, say (γj : c→cj)J . By initiality each fi : |ai|→x in X can be lifted into φi : ai→c in A. The 
resulting sink (φi : ai→c)I is the final lift structured sink (fi : |ai|→x)I , which can be easily verified 
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from the definition of finality. The uniqueness is straightforward from fibre-completeness. 
Remark  The above Topological Duality Theorem implies a duality principle for topological 
categories. However, Aop is not concrete over X but Xop, so this does not imply a duality principle 
over a fixed category. For example, there is no similarity between Set and its dual, Setop. 

Proof of the “only if” part of Proposition 2.10 
Properties (1) (2) (3) has been proved already, and (4) is deduced from (3) and proposition 2.11. 
Note  Since in 2.11 (1), (2), and (3) combined are sufficient to detect topological functors, we 
now know that (1), (2), and (4) combined are also sufficient. 

Up to present we have constructed the equivalence of the succinct definition and the intuitive one. 
From now on we can use either definition freely. The following step will be looking for pleasant 
properties of topological functors. 

Proposition 2.12  Topological functor has a left adjoint and a right adjoint. Its left adjoint and 
right adjoints are both full embeddings of categories. 
Idea  As for U : Top→Set, its left adjoint is the discrete functor which gives a set its discrete 
topology, while its right adjoint is the indiscrete functor which gives a set its indiscrete topology. 
Therefore, we seek to find the least and the greatest elements on fibres so as to construct adjoints. 
The formal definition of “discrete” is: if (A, U) is concrete over X, then the A-object a is called 
discrete iff every possible X-morphism |a|→|b| is an A-morphism. Dual definition works for 
“indiscrete”. 
Proof  By duality principle, we only prove the existence of left adjoints. 
Let (A, U) be topological over X. we need to find for every X-object x a universal arrow from x to 
U, see [CWM, page 55]. Let ax be the least one in the fibre U-1(x), or equivalently, let (hi : ax→ai)I 
be a initial lift of the U-structured source (fi : x→|ai|)I consisting of all possible U-structured 
morphisms fi : x→|ai|. We claim idx : x→|ax| is universal from x to U. The claim is easily justified 
from initiality of (hi : ax→ai)I and faithfulness of U. From the existence of universal arrow to U 
from every X-object, U has a left adjoint [CWM, page 83, Theorem 2 (ii)]. 
If we denote the left adjoint by F, then idx : x→UFx is the universal arrow, so U◦F = idx , and F is 
injective on objects. 

We then have 1 2 1 2 1 2Hom (F , F ) Hom ( , UF ) = Hom ( , )x x x x x≅A X xX . Since the universal 

arrows are identities, the equation above coincides with the hom-set function defined by F, so F is 
bijective on hom-sets. Therefore, F is an full embedding of categories. 

Corollary 2.13  Topological functors preserve limits and colimits. 
Proof  Since topological functors have left and right adjoints, they preserve limits and colimits. 
[CWM, page 118] 

If U : A→X is topological, the preceding corollary does not suffice to help us find limits in A. 
Given a diagram D : J→A with limiting cone S, we only know that US is the limiting cone of U◦D, 
but given US we do not know how to determine what S is. 
Recall that when learning product spaces in topology, infinite products cause problems in that we 
should not define open sets naturally as “arbitrary union of open boxes in the sense that they have 
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open projection on every coordinates”, but like “arbitrary union of boxes which have open 
projection on finite coordinates and full-space projection on other dimensions”. Both definitions 
use the Cartesian product as the underlying set. However, it turns out that the latter definition is 
categorical product in Top. Previous knowledge does not tell us why it is the case, so we now 
point out that the topology on the product space should be the initial topology for the structured 
source of projections. 

Proposition 2.14  Functor U : A→X is topological, then limiting cones in A are U-initial sources. 
Dual: Colimiting cones in topological categories are final sinks. 
Proof  Suppose A-source S = (fi : a→ai)I is a limiting cone for diagram D : J→A, where I = 
Obj(J), ai = Di for all i. To show that S is initial, we need to show that for any X-morphism h : 
|b|→|a| with (fi◦h)I all A-morphisms, h must be an A-morphism. This is obvious if we just find the 
unique connecting A-arrow k : b→a such that the A-arrow (fi◦h) = fi◦k for all i, and Uk = h by 
faithfulness. 

Proposition 2.15  Functor U : A→X is topological. Functor D : J→A is a diagram in A. 
Diagram U◦D has a limiting cone S = (gi : x→|ai|)I in X. Here I = Obj(J), ai = UDi for all i. Then U 
has a limiting cone which is a lift of S, and it is the only lift of S among all the limiting cones of 
diagram U. Shortly speaking, U lifts limits uniquely. 
Dual: Topological functors lift colimits uniquely. 
Proof  A lift of S which is also a limiting cone must be the initial lift of S, so the uniqueness is 
obvious. Let T = (fi : a→ai)I be the initial lift of S; to show that T is a limiting cone of U, we need 
to find connecting morphism b→a for every source R = (φi : b→ai)I which commutes with arrows 
in diagram D. If we check UT and UR in X, we know that there is no more than one choice, 
namely, the connecting morphism for UT and UR in X, say h : |b|→|a|. By initiality, h is an 
A-morphism, so the A-arrow h is the unique connecting morphism for T and R. Therefore, U lifts 
limits uniquely. 

Corollary 2.16  U : A→X is topological, then A is (co)complete iff X is (co)complete. 

The lifting of limits is not an amazing property for forgetful functor, for many familiar forgetful 
functors lift limits uniquely, like Grp, Ab, Vec… over Set, and such “algebraic” functors [CWM, 
page 112]. But the algebraic functors does not preserve colimits, for example, the free products of 
groups have quite complicated underlying sets, and the direct sum of vector spaces is not the 
disjoint union of spaces. A left adjoint implies preservation of limits, and dually. While a left 
adjoint of underlying functor is often called a “free” functor, right adjoints (so-called “co-free 
functors” or “indiscrete functors”) for underlying functors are not as ubiquitous. Therefore owning 
a right adjoint is the special property of topological functors. 

Proposition 2.17  A concrete category (A, U) over X is topological iff all the followings hold: 
(1) U lifts limits uniquely; and 
(2) (A, U) has indiscrete structures, i.e., every X-object has an indiscrete lift. 
Proof  The “only if” part is proved in 2.12 and 2.15. To prove the “if” part, we need to show, by 
2.10, (i) U is fibre-complete and (ii) every costructured arrow f : |a|→ x in X has an final lift.  
(i)  For an arbitrary subclass C of fibre U-1(x), we will find its unique greatest lower bound. If C 

 - 11 -



is empty, then the indiscrete lift of x is the greatest in the fibre U-1(x), hence also the greatest lower 
bound of C. If C is non-empty, define category D to be the subcategory of fibre U-1(x) (as 
preordered class) consisting of all such objects that are greater than at least one object in C. D is 
not empty because the indiscrete lift of x is in D. Let F denote the embedding of categories D→A. 
Now the image of U◦F is rather trivial, namely, it has the same image x for objects and the images 
of morphisms are all idx. The diagram is connected and non-empty, so U◦F has the limit source L = 
(idx : x→x)Obj(D). Since U lifts limits uniquely, L has a unique lift which is a limit of F. The lift of 
limit is the unique greatest lower bound of C. 
(ii)  For every costructured arrow f : |a|→x in X, we view f as a diagram in X. The limit of f is 
obviously |a|. By the lift of limits, f : a→xo (xo is the indiscrete lift of x) has a limit ax with |ax|= x. 
We guess that f : a→ax in A is the final lift of f : |a|→x in X. For an X-arrow g : |ax|→|b| which 
satisfies g◦f : |a|→|b| is an A-arrow, we need to show g is an A-arrow. Let bo be the indiscrete lift 

of |b|, then the pullback of  is . 

Since U lifts limits uniquely, there is an a

|b|
o| | | | |x

g ida b⎯⎯→ ←⎯⎯⎯ |b |b

b

| || | |x
x

id ga x←⎯⎯⎯ ⎯⎯→

o in U-1(x) such that the pullback of 

|b|
ox

g ida b⎯⎯→ ←⎯⎯⎯  is . As in the diagram below, the outer 

quadrangle commutes, and the only possible connecting arrow a→a

| |
o

x
x

id ga a←⎯⎯⎯ ⎯⎯→b

o is f, so ao ≤ ax. But since 

x
fa ⎯⎯→a  is initial, ax ≤ ao . Therefore, ax = ao , and g : ax→b is an A-arrow. 

 

Remark  Unique lifting of limits is a widespread property shared by many reasonable forgetful 
functors not only in topology, but also in algebra. Hence the above theorem shows that the 
existence of indiscrete structures is the crucial condition that makes (A,U) topological. [ACC, 
remark 21.19] 

When studying monomorphisms and epimorphisms, we take injective maps and surjective maps 
as their models. However, non-surjective epimorphisms may exist in concrete categories over Set, 
such as the inclusion Z→Q in Rng. However, the notions of injection and monomorphism 
coincide in most categories familiar to us, while in topological concrete categories over Set, it is 
also true that epimorphisms and surjections coincide. The essence of such properties lies in the 
faithfulness and preservation of limits and colimits. 

Proposition 2.18  Faithful functors reflect monomorphisms, i.e., if F : A→B is a functor and 

fa b⎯⎯→ is an A-morphism, Ff is monic implies that f is monic. 
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Proof  Let h1, h2 : c→a be a parallel pair with f◦h1 = f◦h2 . Ff◦Fh1 = Ff◦Fh2 , so Fh1 = Fh2 . Then 
h1 = h2 by faithfulness. 
Remark  Since faithfulness is self-dual, faithful functors also reflect epimorphisms. 

Proposition 2.19  Functors that preserves pullback (limit of diagram { ⋅→ ⋅← ⋅ } ) squares 
preserves monomorphisms. 

Proof  Suppose F : A→B is a functor that preserves pullback squares, and 
fa b⎯⎯→ is an 

A-morphism. As easily seen, f is monic iff the left square below is a pullback square. 

               

Then, the right square above is a pullback square, so Ff is monic. 
Remark  Since pullback is a kind of limit, functors preserving limits must preserve pullback, 
hence preserves monomorphisms. The proposition follows: 

                  

   

    

    

a

a

id

id f

f

a a

a b

⎯⎯→
↓
⎯⎯→

↓

F

F                        F

    F

    F F

   F F

a

a

id

id f

f

a a

a b

⎯⎯→
↓ ↓

⎯⎯⎯→

Proposition 2.20  U : A→X is a topological functor, then for every A-morphism f, 
(1) f is monic iff Ff is monic; and dually 
(2) f is epi iff Ff is epi. 

 - 13 -



Notes 
Just as category is a generalization of monoid, and groupoid is a generalization of group, I think 
topological concrete category is a generalization of complete lattice. This is one of the reasons 
why topological structures are strongly connected with orders. 
As in the characterization of topological functors, fibre-completeness is a very strong property 
which rules out lots of concrete categories seemingly “topological”. Met (metric spaces with 
continuous maps) is not topological because its fibre is not a partially ordered set, i.e., there are 
different structures on one set that are equivalent. If we require the morphisms to be contractions, 
there will not be equivalent but different metric structures on one set. But then another question 
emerges, that is, given a set there is no “free metric space” over it, since no number is greater than 
all numbers. Haus is not topological since it has no indiscrete structures, unless for a singleton or 
empty set. HComp is not topological for the same reason. hTop is not even a concrete category 
over Set in any natural way. However, Rel, Prost, Unif, and so on, are topological constructs 
[ACC, page 475], which have no “additional” requirements, such as Hausdorff, compactness, or 
connectedness, other than basic ones. 
On the other hand, the underlying functors of “algebraic” categories do not satisfy the definition of 
topological functor, because no “algebraic” category is fibre-complete, namely, the identity map 
on a set cannot be a homomorphism between different “algebraic” structures. However, all 
identity functors are trivially topological. 
There are also topological functors with codomains not Set, such as U : TopGrp→Grp. We know 
from our deduction that the limits and colimits in TopGrp can be constructed just as in Grp with 
initial (for limits) or final (for colimits) topologies. 
Roughly speaking, the essence of topologicality lies in existence of indiscrete (or “co-free”) 
objects, i.e., existence of a right adjoint. 
My work so far is my ideas of topological concrete functors. The ideas for definitions are mainly 
from [ACC, Chapter VI], while the observations, proofs and remarks are by myself. 
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Algebraic Categories 
 

The evident models for algebraic categories over Set are Grp, Ab, R-Mod, Vec, Rng, Mon, 
SGrp, and other equational classes of algebras [CWM, page 124]. For detailed definition, refer to 
[ACUA, Definition 11.7] 
From now on denote every equational class of algebras as <Ω, E>-Alg, where Ω is the set of 
operators and E is the set of identities, and call its objects <Ω, E>-algebras. As mentioned in 
[CWM, page 124], every equational class of algebras of a given type τ = (Ω, E) has a left adjoint, 
so its underlying functor preserves limits. Moreover, the underlying functor of <Ω, E>-Alg creates 
limits. 

Definition 3.1  Let F : A→B be a functor. F is said to create limits iff : 
For every diagram D : J→A and every limiting source L = (fi : b→bi)I of F◦D in B with I = Obj(J) 
and bi = F◦D(i) for all i in I, (1) there exists a unique source S = (hi : a→ai)I in A with ai = D(i) for 
all i, such that each hi = Ffi; and (2) this S is a limiting cone of D. 

Proposition 3.2  The underlying functor to Set of <Ω, E>-Alg creates limits. 
Proof  [CWM, page 111, Theorem 2; page 112, Theorem 3] 

Proposition 3.3  If F : A→B creates limits, then F lifts limits uniquely. 
Proof  Trivial from the definitions. 

Definition 3.4  Functor F : A→B is said to create isomorphisms iff, for any F-structured arrow 
h : b→Fa which is an isomorphism in B, 
(1) there is a unique A-morphism f : ab→a such that Ff = h , and 
(2) f is an A-isomorphism. 
Note  “Create isomorphisms” is not self-dually defined, but it really is a self-dual property just as 
it sounds, and the proof is easy but not trivial. 

Proposition 3.5  If F : A→B creates isomorphisms, then Fop : Aop→Bop creates isomorphisms. 
Proof  Suppose h : Fa→b is an isomorphism in B, we are asked to find a unique A-morphism 

 such that Ff = h and then to show that f is an A-isomorphism. 

First find the inverse h

o
fa ⎯⎯→a

a a

a

-1 : b→Fa of h. Since h-1 is an B-isomorphism, it has a unique lift k : ab→a 
such that Fk = h-1. Then we may find the inverse f : a→ab of the A-isomorphism k. Obviously Ff = 
(Fk)-1 = (h-1)-1 = h and f is an A-isomorphism. 
Assume there is another g satisfying Fg = h, then: the isomorphism and F-structured arrow 

 has a unique lift, namely, , but  is also a 

lift of , so g◦f = id = k◦f. We immediately know g = k , for the isomorphism f is 

cancellable. Therefore the lift f of h is unique. 

Fb
b

idb⎯⎯⎯→ ba
b b

ida a⎯⎯⎯→ b b
f ga a⎯⎯→ ⎯⎯→

Fb
b

idb⎯⎯⎯→
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Proposition 3.6  If F : A→B creates limits, then F creates isomorphisms. 
Proof  Just regard the isomorphism in B as a limiting cone. 

Definition 3.7  (A, U) is concrete over X. U is called fibre-discrete iff its fibres are ordered by 
identities, i.e., all its fibres are disconnected partially ordered classes. 

Proposition 3.8  The underlying functor to Set of <Ω, E>-Alg is fibre-discrete. 
Proof  Out of creation of isomorphisms. 
Let the underlying functor be U : <Ω, E>-Alg→Set. If a ≤ b in fibre U-1(x), then there is a 

morphism 
fa b⎯⎯→  with Uf = idx. Obviously f is a lift of the isomorphism 

id Uxx b⎯⎯⎯→ . 

Since the morphism idb is also a lift of idx , f = idx by uniqueness. 

Proposition 3.9  The underlying functor to Set of <Ω, E>-Alg has a left adjoint; or equivalently, 
there is a free <Ω, E>-algebra for any set. 
Proof  [CWM, page 124-125] 

Although operators and identities are typical for “algebraic” categories over Set, we cannot define 
algebraic category through this way, because such method would rule out other categories 
behaving just as algebraic ones, like HComp, and because such method is not categorical. We 
want to find a definition which does not rely on additional structures on category, but does lead to 
nice properties as mentioned above. 

One problem is, all familiar “algebraic” categories over Set have colimits, or equivalently, they 
have coproducts and coequalizers.  
As for coequalizers, we are tempted to guess that in <Ω, E>-Alg, the coequalizer of f and g : A→B 
is the quotient of b that identifies f(a) and g(a) for all a in A but only identifies those have to be 
identified by such requirement, the smallest congruence relationship containing all f(a) ~ g(a). It is 
plausible that <Ω, E>-Alg has coequalizers constructed in this way. Another construction of the 

coequalizer of f and g : a→b is like the following. Let  be the source consisting of 

all arrows 

( i
i I

hb c⎯⎯→ )

ci
i

hb⎯⎯→  that satisfy hi◦f = hi◦g. We cannot represent the whole source by a single 

<Ω, E>-Alg morphism, but if we allow large <Ω, E>-algebras (that is, classes with <Ω, E> 

structures on them), we can form the product of (ci)I . Thus the source  can be 

expressed by a single large <Ω, E>-algebra homomorphism 

( )i
i I

hb c⎯⎯→

i

i I

hb
∈

⎯⎯→ c∏ . Factorize h into a 

composite of an epimorphism and a monomorphism in the canonical method, i.e., 

 where p is the projection to the image and e is the embedding to the 

codomain. As a quotient of b, c can be indexed by a set, so we can regard c as a real <Ω, 
E>-algebra. Then I claim p : b→c is a coequalizer of f and g, and its proof is trivial. 

i

i I

p eb c
∈

⎯⎯→ ⎯⎯→∏c

 - 16 -



For coproducts: In Grp, there are free products; in Rng, there are tensor products, etc.; but the 
underlying set of the coproduct of a and b seems irrelevant to the underlying sets of a and of b. 
My observation is, the coproduct of a family M indexed by a set I in <Ω, E>-Alg can be formed by 
two successive operations: first, find a generating set si for every <Ω, E>-algebra m in M, and let 

mo be the free object over set ; second, find a quotient <Ω, E>-algebra of mi
i I

s
∈

o in which all 

elements that should collapse do collapse. Just take Grp for example, we know that free product 
of groups are formed very much like construction of free groups. The construction of free product 
of (Gi)I is the set of finite sequence of words (a1 , … , an) where each ai belongs to some Gi and 
any two adjacent words are not in the same Gi. Such requirement for adjacent words is forming 

the quotient of free group over set . The step of forming quotient is the same as 

constructing coequalizers in the last paragraph, that is, get the image-embedding factorization of 

m

i
i I

G
∈

o→ and the embedding of image represents the very coproduct of M = (mi

i I

m
∈
∏ i)I . 

From the above observations, the existence of colimits should be a property of algebraic functors 
in the absence of right adjoints. The existence of colimits, as in the construction procedure, 
requires factorizations of homomorphism from a <Ω, E>-algebra mo to a large <Ω, E>-algebra 

. We can represent such a homomorphism by a source (mi

i I

m
∈
∏ o→mi)I , so the factorization of 

sources are required. 

As in the introduction of topological functors, we first give the formal definition of essentially 
algebraic functors [ACC, Definition 23.1], and then explain the terms within it. The definition of 
algebraic functors is a bit more complicated and seems unnatural, so I do not introduce it much. 

Definition 3.10  A functor is called essentially algebraic provided that it creates isomorphisms 
and is (Generating, Mono-Source)-factorizable. 

Definition 3.11  G : A→B is a functor. Then an G-structured arrow f : b→Ga in B is called 
generating iff: for any pair of A-arrows h1, h2 : a→c, Gh1◦f = Gh2◦f implies h1 = h2. 
Remark  If G has a left adjoint F with φ an natural isomorphism HomA(F-,-) Hom≅ B(-,G-), then 
f : b→Ga is generating iff φf : Fb→a is epi. The proof is trivial. 

B

a

c

Definition 3.12  A source (hi : a→ai)I in category A is called a mono-source iff: for any parallel 
pair of A-arrows f1, f2 : c→a satisfying hi◦f1 = hi◦f2 for all i, there must be f1 = f2. 
Remark  If (ai)I has a product, then (hi : a→ai)I is a mono-source iff its product map 

 is a monomorphism. This grabs the essence of mono-sources, even when the product 

does not exist. In 

i

i I

a
∈

→∏
p e

i

i I

b c
∈

⎯⎯→ ⎯⎯→∏  mentioned when constructing coequalizers, the 

embedding e is theoretically illegal, but it can be considered as a mono-source legally. 

Definition 3.13  A functor F : A→B is called (Generating, Mono-Source)-factorizable iff: for 
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any F-structured source R = (hi : b→Fai)I , there exists a generating F-structured arrow 

 in B and a mono-source Ffb⎯⎯→ a )( i
i i I

gS a a ∈= ⎯⎯→  in A such that Fgi◦f = hi for all i. 

Such a factorization into f and S is often called a (Generating, Mono-Source)-factorization of 
the F-structured source R. 

Definition 3.14  A category A is called (Epi, Mono-Source)-factorizable iff: 

for any source R = (hi : b→ai)I in A, there exists a epimorphism 
fb a⎯⎯→  and a mono-source 

 such that g( i
i i I

gS a a ∈= ⎯⎯→ ) i◦f = hi for all i. Such a factorization into f and S is often called 

an (Epi, Mono-Source)-factorization of the source R. 

Notice that in the definition faithfulness is again not pre-assumed, and the reason is again that the 
requirements in the definition imply faithfulness. An essentially algebraic functor sends only 
isomorphisms and nothing else to isomorphisms, which might suggest faithfulness. Notice also 
that in the definition, existence of a left adjoint is not included, which is also because it is implied 
hence not expressed. 

Lemma 3.15  Essentially algebraic functors preserve mono-source. 

Proof  Suppose F : A→B is essentially algebraic. For any mono-source ( )i
i i I

fS a a ∈= ⎯⎯→  

in A, to prove  is a mono-soure in B, we need to show rFF (F F )i
i I

fS a a= ⎯⎯→ 1 = r2 for every 

parallel pair r1, r2 : b→Fa of B-arrows satisfying Ffi◦r1 = Ffi◦r2 for all i. Define a source 

, and let its (Generating, Mono-Source)-factorization be: a generating 

F-structured arrow f : b→Fa

1, 2( F )j
j

rb a =⎯⎯→

o in B and a mono-source  in A, with Fso( )j
j

sa a =⎯⎯→ 1, 2

)

j◦f = rj ( j 

= 1, 2). Since Ffi◦Fs1◦f = Ffi◦Fs2◦f for all i, fi◦s1 = fi◦s2 for all i because f is generating. For 

 is a mono-source, s( i
i I

fS a a= ⎯⎯→ 1 = s2 . Therefore r1 = Fs1◦f = Fs2◦f = r2 . 

 

Proposition 3.16  Essentially algebraic functors are faithful. 
Proof  Suppose functor F : A→B is essentially algebraic. Let r, s be a parallel pair of A-arrows 
a1→a2 satisfying Fr = Fs = h in B. Let b = Fa1 . We define an F-structured source 

 - 18 -



1, 2( F )j
j j

fS b a == ⎯⎯→  where f1 = idb and f2 = h. By definition, S has a (Generating, 

Mono-Source)-factorization, say  is generating and  is 

a mono-source with Fk

oFgb⎯⎯→ a , 2o 1( )j
j j

kM a a == ⎯⎯→

j◦g = fj (j = 1, 2). Since Fs◦Fk1◦g = Fr◦Fk1◦g = Fk2◦g , we know that s◦k1 = 
r◦k1 = k2 from that g : b→Fao is generating. We now can deduce that Fk1 is a monomorphism: if 
Fk1◦m1 = Fk1◦m2 then Fk2◦m1 = Fs◦Fk1◦m1= Fs◦Fk1◦m2 =Fk2◦m2 , so m1 = m2 from that FM = 

 is a mono-source. Being monic and right-invertible by g, Fk1, 2
F(F F )j

j j
ka a =⎯⎯⎯→ 1 is an 

isomorphism with inverse g. F creates isomorphisms, so k1 is an isomorphism. Therefore s◦k1 = 
r◦k1 implies s = r.  

 

Definition 3.17  Concrete functor (A, U) over X is called essentially algebraic iff U is 
essentially algebraic. 

Proposition 3.18  Essentially algebraic functors have left adjoints. 
Idea  In every <Ω, E>-Alg, “free object” over a set b is generated by set b, and among all objects 
generated by set b, the free object has fewest relations, which means the embedding from b to 
every object generated by b can be factored through the embedding from b to its free object. 
Proof  Suppose functor U : A→B is essentially algebraic. We need to find for every B-object b a 
universal arrow from b to U. [CWM, page 55] [ACC, Definition 18.1] 

Define F-structured source ( U )i
i i I

fS b a ∈= ⎯⎯→  consisting of all possible U-structured 

arrows . Then S has a (Generating, Mono-Source)-factorization, say  

is generating and (  is a mono-source with  is 

equal to  for all i. I now claim that  is universal from b to U. For 

any possible F-structured arrow , there is a 

Ui
i

fb⎯⎯→ a

) a

a a

a a

Ufb a⎯⎯→

i
i i I

ha a ∈⎯⎯→ UU Ui
i

f hb a⎯⎯→ ⎯⎯⎯→

Ui
i

fb⎯⎯→ Ufb⎯⎯→

Ui
i

fb⎯⎯→ i
i

ha⎯⎯→  such that fi = Uhi◦f, and 

the uniqueness comes from that  is generating. 

Remark  Here we did not use the property of mono-source or the creation of isomorphisms, so 
we know that each F-structured source can be factored through a generating structured arrow is 
sufficient to give the functor F a left-adjoint. 

Ufb⎯⎯→ a
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Corollary 3.19  Essentially algebraic functors preserve limits. 

Corollary 3.20  Essentially algebraic functors create limits. 
Its proof is after the following lemma. 

Lemma 3.21  Let functor U : A→X be an essentially algebraic functor. Then every mono-source 
in A is initial. 

 

Proof  Suppose source ( i
i i I

fS a a ) ∈= ⎯⎯→  is a mono-source in A. See the diagram above. 

For any X-arrow  with UfU hc⎯⎯→Ua

a , 2

i◦h A-arrows for all i, we need to show that h is an 

A-arrow. Let Ufi◦h = Uhi. First, find a (Generating, Mono-Source)-factorization for the 

U-structured source  where (k1, 2(| | U )j
j j

kc a =⎯⎯→ 1, a1) = (id|c|, c) and (k2, a2) = (h, a), say 

generating U-structured arrow  in X and mono-source  in 

A. For all i, Uh

o| | Ukc ⎯⎯→ o 1( )j
j j

ma a =⎯⎯→

i◦Um1◦k = Ufi◦h◦Um1◦k = Ufi◦h = Ufi◦Um2◦k. Since k is generating, hi◦m1 = fi◦m2 in 

A, and Ufi◦Um2 = U(hi◦m1) = Ufi◦h◦Um1 . For UU (U U )i
i i I

fS a a ∈= ⎯⎯⎯→  is a mono-source 

(recall that essentially algebraic functors preserve mono-source), Um2 = h◦Um1 . That 

 is a mono-source implies  is a mono-source, 

and hence that Um

o( )j
j j

ma a =⎯⎯→ 1, 2 1, 2

j

o
U(U U )j

j j
ma a =⎯⎯⎯→

1 is monic. Being monic and right-invertible by k, Um1 is an isomorphism. So 
m1 is an isomorphism, and h = Um2◦ U(m1)-1. So h is an A-arrow. 

Proof of Corollary 3.20 
Suppose functor U : A→X is essentially algebraic. For any diagram D : J→A, if U◦D has a 

limiting source  in X, we need to find the unique source Obj( )( UD )j
j

fS x j ∈= ⎯⎯→

Obj( )( D )j
x j

hT a j ∈= ⎯⎯→ j

j

 such that UT = S, and also show that T is a limiting cone in A. 

First step: We get a (Generating, Mono-Source)-factorization for the U-structured source 

, say the generating structured arrow Obj( )( UD )j
j

fS x j ∈= ⎯⎯→ Ufx a⎯⎯→  and the 
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mono-source Obj( )( D )j
j j

kR a j ∈= ⎯⎯→  in A which satisfy Ukj◦f = fj for all j. 

Second step: We show that Obj( )( D )j
j j

kR a j ∈= ⎯⎯→  is a limiting cone in A. For arbitrary 

source  in A which is a cone over diagram D : J→A (i.e., the cone 

commutes with all arrows within the image of diagram D), 

Obj( )( D )j
j

mc j ∈⎯⎯→ j

Obj( )
U(U UD )j

j j
mc j ∈⎯⎯⎯→  is a 

cone over diagram UD : J→X. Therefore there is a connecting arrow U gc x⎯⎯→  such that fj◦g 

= Umj for all j. Since R is a mono-source, UR is a mono-source, and hence UR is U-initial. So f◦g 

is an A-morphism which serves as the connecting arrow from  to R. The 

uniqueness of such connecting arrow follows immediately because R is a mono-source. 
Third step: We can now show that U creates limits. That R is a limiting cone in A and that U 

preserves limits imply UR is a limiting cone. Therefore 

Obj( )( D )j
j

mc j ∈⎯⎯→ j

Ufx a⎯⎯→  is an isomorphism as the 

connecting arrow of two limiting cones. Since U creates isomorphisms, there is an A-isomorphism 

x
ha a⎯⎯→  with Uh = f. Then limiting cone Obj( )( D )j

x j
h kT a j°

∈= ⎯⎯⎯→ j  is the required 

lifting of S. Such a lifting is inevitably a limiting cone, and hence equivalent to h, so it is unique 
since U creates isomorphisms. 

Proposition 3.22  The underlying functor U : <Ω, E>-Alg→Set is essentially algebraic. 
Proof  Functor U obviously creates isomorphisms. 

For any U-structured source ( U )i
i i I

fS x a ∈= ⎯⎯→  in Set, we may construct , a large 

<Ω, E>-algebra (Cartesian product with natural algebraic structure) and large product 

i

i I

a
∈
∏

i
fx a⎯⎯→∏  of (fi)I . Factor f into a composite of a generating map (in the common algebraic 

sense) and an embedding, say i
g ex a⎯⎯→ ⎯⎯→ a∏ . Being generated by x, hence a surjective 

image of the free <Ω, E>-algebra over x, a can be indexed by a set, so a can be chosen as a set. 

The embedding e can be represented by an A-source ( i
i i I

ea a ) ∈⎯⎯→  which is a mono-source. 

Meanwhile g is generating (categorically) from the definition. So the structured source S is 
(Generating, Mono-source)-factorizable. 

Proposition 3.23  Essentially algebraic functors are fibre-discrete. 
Proof  By the creation of isomorphisms. 

From work above, we know that “Essentially algebraic” is not a self-dual property: an essentially 
algebraic functor preserves monomorphisms, but it does not preserves epimorphisms, for example 
Z→Q is epi in Rng and but not in Set. Note that monomorphisms are mono-sources with the 
index set a singleton set. 
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The study so far tells us that the essence of being “algebraic” is the existence of free objects, 

fibre-discreteness, and the ability to factor a morphism fa b⎯⎯→  into e ma c b⎯⎯→ ⎯⎯→  

where e is epi and m is monic. In fact, h : x→Ua is generating iff φ(h) : Fx→a is epi, here F is the 
left adjoint of U, “free functor” and φ is the natural equivalence HomX(-,U-)→HomA(F-,-) . 

By now we have not considered the lifting of colimits in essentially algebraic concrete categories. 
We do not expect essentially algebraic functors to create colimits, to lift colimits, or even to 
preserve colimits, because there are examples that they do not. The underlying functors of Grp, 
Ab, R-Mod, Vec, … do not preserve coproducts. 
However, they have colimits for all diagram D : J→<Ω, E>-Alg with J small. Here “J is small” 
means that the class Mor(J) is a set. 
Nevertheless, by computing the coproducts and coequalizers in <Ω, E>-Alg, the colimits in Set 
generate (in the algebraic sense) the colimits in <Ω, E>-Alg, which gives us the idea of 
constructing colimits in <Ω, E>-Alg. 

Proposition 3.24  Functor U : A→X is essentially algebraic, then for any functor D : J→A, the 
diagram D has a colimiting cone in A if U◦D : J→X has a colimiting cone in X. 
Note: Here J is not required to be small. 

Proof  Suppose U◦D : J→X has a colimiting cone , then define a 

source  consisting of all possible structured arrows h

Obj( )(UD )j
j

fj x ∈⎯⎯→ J

( U )i
i i I

hS x a ∈= ⎯⎯→ i : x→Uai satisfying 

hi◦fj : |Dj|→|ai| are A-arrows for all j. Then S has a (Generating, Mono-Source)-factorization, say 

the generating structured arrow Uhx a⎯⎯→  in X and the mono-source  in A 

with Uk

( )i
i i I

ka a ∈⎯⎯→

i◦h = hi for all i. By the lemma above, every mono-source is initial, so every composition 

|D | | |jf hj x⎯⎯→ ⎯⎯→ a J

J

J J

 is an A-arrow. We claim that  is a 

colimiting cone of diagram D : J→A. 

For an arbitrary sink from diagram D to an A-object b, we may 

factor  through x, say by  and 

Obj( )(D )j
j

h fj a ∈⎯⎯⎯→

Obj( )(D )j
j

mR j b ∈= ⎯⎯→

Obj( )
UU (UD U )j

j
mR j b ∈= ⎯⎯⎯→ Obj( )(UD )j

j
fj x ∈⎯⎯→

Umx b⎯⎯→ . By definition of ( U )i
i i I

hS x a ∈= ⎯⎯→ , (m, b) is one of the (hi, ai), so m can be 

factored through Uhx a⎯⎯→ . Thus R can be factored through a. The uniqueness of the 

connecting arrow comes from that Uhx a⎯⎯→  is generating. 

Remark  From the proof above, we see that the colimits in “algebraic” categories are constructed 
as the object generated by the colimits of the underlying diagram, satisfying the some 
relationships, as I said before. 

Corollary 3.25  Functor U : A→X is essentially algebraic, then 
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(1) A is complete iff X is complete, 
(2) if X is co-complete, then A is co-complete. 

Corollary 3.26  Every <Ω, E>-Alg is complete and co-complete. 

As is known to all, monads provide a method to define “algebraic systems”, so it is useful to find 
out whether monadic functors are essentially algebraic. It is not true that every monadic functor is 
essentially algebraic, for the following reason: It is easy to construct a category C which has no 
epimorphisms or monomorphisms except identities, then in C we cannot factor a non-identity 
arrow into first an epimorphism then a monomorphism, so the identity functor of C is not 
essentially algebraic, while the identity functor is of course monadic. Therefore we have to tune 
down our expectation. 
[CWM, page 137-143] [ACC, Section 20] 

Remark  The terms involving monads and monadic functors are from [CWM, Chapter VI]. 

Proposition 3.27  Monadic functors over Set are essentially algebraic. 
Proof  By definition, a monadic functor U : A→X can be factored into first an isomorphism 
A→XT, and then an underlying functor GT : XT→X, for some monad T = <T, η, μ>. 
[CWM, page 140, definition; page 142, theorem 1] 
We can identify the categories A and XT. Therefore it suffices to prove U : SetT→Set is essentially 
algebraic for any monad T. 

 

TT T
            

    

fx y
k h

x y
f

⎯⎯⎯→
↓ ↓
⎯⎯⎯→

 

The creation of isomorphisms seems obvious, as in the diagram above: given a U-structured arrow 
f : x→U<y, h>, or equivalently, a bijective set-function f : x→y with T-algebra h : Ty→y, there is a 
unique set-function k : Tx→x such that h◦Tf = f◦k, namely, h◦Tf◦f -1.  

Suppose ( U , )i
i i i I

fS x y h ∈= ⎯⎯→ < >  is an arbitrary U-structured source in Set. We are 

asked to find an (Generating, Mono-Source)-factorization for S. We can first factor each fi into 

UU T , U ,x i
x i i

mx x y hη μ⎯⎯→ < > ⎯⎯⎯→ < > , since ηx is a universal arrow from x to U. Here 

mi stands for both morphisms in Set and morphisms in SetT. Because in Set things are quite 

simple, we can find the unique (Epi, Mono-Source)-factorization of source , 

say surjection 

(T )i
i i I

mx y ∈⎯⎯→

T mx y⎯⎯→  and mono-source ( i
i i I

ky y ) ∈⎯⎯→ . To define a T-algebra structure 

h : Ty→y over y, we will copy the process in defining group structures in quotient groups: Given 
group G and its normal subgroup N, how to define a group structure on the set of cosets G/N. 
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In Set every epimorphism is a retraction, i.e., right invertible, unless the domain is empty. If Tx is 

empty, then x is empty since there is a set function Txx xη⎯⎯→ , so the source 

 can be factorized into first the generating structured arrow 

 and then the mono-source 

( U , )i
i i i I

fS x y h ∈= ⎯⎯→ < >

U ,x i ∅→ <∅ >d ( , , )i i i Iid y h∅ ∈< ∅ > ⎯⎯→< > . If Tx is 

non-empty, let k be a right inverse of the surjection m. Define h : Ty→y to be the composition 
k◦ηx◦Tk, as in the diagram above. Then the left square below automatically commutes. Also, the 
right square in the diagram below commutes for each i, because Tm is right invertible by Tk, 
hence an epimorphism. 

 

Our final task is to prove h : Ty→y thus defined is really a T-algebra, i.e., it makes the two 
diagrams [CWM, page 140, diagram 1] commute. First we shall prove the commutativity of the 
following diagram: 

  

2

     

T  T T
               

T
      

y h

hy y

y y
h

h

μ

⎯⎯⎯→
↓ ↓
⎯⎯⎯⎯→

See the diagram below. The commutativity of rectangle (1) and of polygon (3) rely on that μ is a 
natural transformation, the commutativity of rectangle (2) comes from the axiom of monad [CWM, 
page 137, diagram 2], and the commutativity of quadrangle (4) comes from k◦m = idy. The big 
outer square is equal to the smaller square above. 
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The commutativity of the other diagram of axiom for T-algebra [CWM, page 140, diagram 1] is 
proved in the following diagram. The commutativity of quadrangle (1) follows the naturality of η, 
and the commutativity of polygon (2) comes from that μx◦ηTx = idTx and k◦m = idy.  

 

We claim that the structured arrow T U ,x mx x y hη⎯⎯→ ⎯⎯→ < >  together with the source in 

SetT  provide a (Generating, Mono-Source)-factorization of S, 

namely, . 

Faithful functors reflect mono-source just as they reflect monomorphisms. The source 

( , , )i
i i i I

ky h y h ∈< > ⎯⎯→< >

( U , )i
i i i I

fx y h ∈⎯⎯→ < >
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( , , )i
i i i I

ky h y h ∈< > ⎯⎯→< >  in SetT is a mono-source because its underlying source 

 in Set is a mono-source, and because U is faithful.  

It remains to check whether the U-structured arrow 

( i
i i I

ky y ∈⎯⎯→ )

T U ,x mx x y hη⎯⎯→ ⎯⎯→ < >  is 

generating. Define the functor F : Set→SetT sending every set a to T , aa η< >  and sending 

every arrow to itself. By [CWM, page 140, theorem 1], F is the left adjoint of U. Since 

FF Tx
x

idx x,μ⎯⎯⎯→< >  is an epimorphism, the U-structured arrow U T ,x
xx xη μ⎯⎯→ < >  is 

generating [see Definition 3.11 of this paper, and its following remark]. Faithful functors reflect 

epimorphisms, so that m is an epi in Set implies that the SetT-arrow T , ,x
mx y hμ< > ⎯⎯→< >  

is an epimorphism. A simple result is, the fact that the U-structured arrow UFxx xη⎯⎯→  is 

generating combined with that F m ,x y h⎯⎯→< >  is epi in SetT is sufficient to imply that the 

U-structured arrow UF U ,x mx x y hη⎯⎯→ ⎯⎯→ < > is generating.  

Remark  We see that the proof requires nice properties of Set, namely, all epimorphisms are 
right-invertible except those with empty domain (Zorn’s Lemma), and we cannot define such a 
T-algebra structure on a quotient set without a right-inverse. Recall that in defining quotient group 
we define the multiplication of cosets by choosing representatives from them. 

Corollary 3.28  The underlying functor of HComp to Set is essentially algebraic. 
Proof  Underlying functor HComp→Set is monadic by [CWM, page 157, theorem 1]. 

The concept of “essentially algebraic” sounds weaker than “algebraic”, because with certain 
additional assumptions, in algebraic categories one can find enough projectives [ACC, proposition 
23.28], which is a must for doing homological algebra. I am not going to introduce algebraic 
functors any more than stating the definition. 

Definition 3.29  In a category C, an epimorphism e is called an extremal epimorphism iff: for 
any factorization e = m◦h with m a monomorphism, m must be an isomorphism. [ACC, definition 
7.74] 
Dual notion: extremal monomorphisms. 

Definition 3.30  A functor is called algebraic iff it is essentially algebraic and preserves 
extremal epimorphisms. 

Definition 3.31  A concrete category (A, U) over X is called algebraic iff U is algebraic. 

Proposition 3.32  Monadic functors over Set are algebraic. 
Proof  We already know that U : SetT→Set is essentially algebraic, so it remains to show that U 
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preserves extremal epimorphisms, which is available in [ACC, example 23.20 (1)]. 

Finally, as a conclusion of my thesis, I will study what kinds of functors are both algebraic and 
topological. 

Proposition 3.33  If functor U : A→X is both essentially algebraic and topological, then U is an 
isomorphism between categories X and A. 
Proof  Suppose U : A→X is both essentially algebraic and topological. 
(1) For any X-object x, the fibre U-1(x) is a complete lattice and a preordered class ordered by 
equality, hence a singleton set. Therefore U is bijective on objects. 
(2) The faithfulness guarantees that U is injective on hom-sets. 
(3) The existence of an initial lift of U-structured arrow shows that U is surjective on hom-sets. 
All in all, U is an isomorphism. 
Remark  Though algebraic structures and topological structures are compatible in various 
situations, like TopGrp, n-Mfd, and the category of Lie groups, there is no possibilities that a 
structure is both topological and algebraic. 
Also notice that we should not determine whether a concrete category is algebraic or topological 
by its appearance. Rel is topological over Set, since a relation on set a is given by a subset of the 
Cartesian product a2. Although Lat (lattices and lattice homomorphisms) is a subcategory of Rel, 
it is algebraic over Set, because a lattice structure on a set a is given by two certain functions 
a2→a satisfying some properties. HComp is algebraic over Set, even if it seems topological.
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Notes 
While the definition of topological functors is well-established, the definition of algebraic functors 
is controversial. See [CTop1], [CTop2]. 
I first grabbed the concept of “algebra” in a seminar presentation given by Liang Hao (Zhejiang 
University), and finds out that the different “algebraic systems” are all defined by operators and 
identity relations. In learning category theory, the underlying functors of algebraic categories show 
amazing similarity [CWM, page 111, page 124]. The method through universal algebra provides 
us with sufficient models of “algebraic categories” [CT, page 236]. 
In spring 2007 I studies monads by myself and realized various algebraic structures can be defined 
by means of free objects, e.g., a group structure on set a can be given by a set function to a from 
the free group generated by a. Under suitable requirements (commutativity of diagrams), these 
structure suffice to define categories like Grp, Ab, R-Mod, Vec, Mon, etc. 
[ACC, Section 23] and [CT, Section 32] provide yet another way for studying the similarity of 
algebraic categories, namely, through certain factorization properties of categories. Such method 
depicts the essence of “algebraic categories”, that is, fibre-discreteness and the existence of 
free-objects and (Epi, Mono-Source)-factorizations. [ACC, 23.8] 
Among the three method, I think the last one is the most general one which focus completely on 
the intrinsic structures inside categories, while the “monad” way works quite nicely in concrete 
categories over Set but it depends whether it goes well on other categories. Universal algebra rules 
out lots of “algebraically-behaved” categories like HComp, and only contain those with given 
algebraic structures, but even though such a way is not at all categorical, it provides the rough 
ideas and motivations for algebraic categories and functors, so it should be frequently inspected to 
study properties of categories. 
The ideas are mainly from [ACC, Chapter VI], while the observations, proofs and remarks are by 
myself.
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