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Preface

r-‘[‘his book is intended for a two-quarter or one or two-semester
course in advanced calculus and introductory real analysis. The book is
classical in the sense that it deals with calculus and Fourier series in Euclidean
space. Only a few brief references are made to “modern” topics such as
Lebesgue integration, distributions, and quantum mechanics. We resisted
the temptation to include vector analysis (the Stokes theorem and so forth).
In most curricula, this topic comes earlier in the second year at a more
informal level (see, for example, J. Marsden and A. Tromba, Vector Calculus,
W. H. Freeman and Company, 1975) and possibly later in the context of
manifold theory for students who are so inclined.

In presenting the material, we have been deliberately concrete—aiming at
a solid understanding of the Euclidean case and introducing abstraction
only through examples. For instance, if Euclidean spaces-are properly
understood, it is a small jump to other spaces such as the space of continuous
functions and abstract metric spaces. In the context of the space of continuous
functions, we can see the power of abstract metric space methods. When
the general theory is presented too soon, the student is confused about its
relevance; consequently, much teaching time can be wasted.

The book assumes that the reader has had some calculus; that is, that he
or she knows how to differentiate and integrate standard functions. Strictly
speaking, the theory is developed logically and requires few prerequisites,
although a knowledge of calculus is needed for an understanding of examples
and exercises. Also, some brief contact with partial derivatives and multiple
integrals is desirable but not essential. Chapter 6, on differentiation, requires
the rudiments of linéar algebra; specifically, the student should know what
a linear transformation and its representing matrix is.

Each chapter is organized as follows. There are numerous sections con-
taining the definitions, statements of the theorems, examples, and fairly
easy problems. Once the student masters the theorems and is able to handle
the easy problems, he can move on to the end of the chapter to master the
technical proofs. Here, numerous further examples and exercises are given.
The easier exercises following each section enable the student to master the
material as he goes along. The exercises at the end of the chapter then often
require an integrated knowledge of the whole chapter or previous chapters
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