
Zvi Rosen Representation Theory Notes Mark Haiman

1. Friday, August 24, 2012

1.1. Matrix Representations of (Finite) Groups. Historically, Representation Theory began
with matrix representations of groups, i.e. representing a group by an invertible matrix.

Definition 1.1. GLn(k) = the group of invertible n × n matrices over k; k can be a field or a
commutative ring. A matrix representation of G over k is a homomorphism ρ ∶ G→ GLn(k).
Remark 1.2. Matrix representation is useful for calculating in G if ρ is injective (or faithful). If
not, you can only calculate up to equivalence via the kernel.

Example 1.3.
ρ ∶ Sn → GLn(k).

ρ(π) = A ∶ Aij =
⎧⎪⎪⎨⎪⎪⎩

1 if i = π(j)
0 otherwise.

Let e1, . . . , en ∈ kn; then, ρ(π)(ej) = eπ(j), so this is a group homomorphism.
In the specific case n = 3, if π = (1 2 3), then

ρ(π) =
⎛
⎜
⎝

0 0 1
1 0 0
0 1 0

⎞
⎟
⎠

This is the standard matrix representation of Sn.

Example 1.4. If G acts on X, and ∣X ∣ = n, then one can map G → S(X) ≅ Sn → GLn(k). This
leads us directly to the permutation representation of G.

Example 1.5. G acting on G on the left, so g ● h = gh; then, G → GLn(k), where n = ∣G∣. This is
called the “regular representation.”

Example 1.6. ρ ∶ G→ GLn(k), sending ρ(g) = In. This is the trivial representation of G.

Example 1.7. Suppose that there is a ω ∈ k, such that ωn = 1, for example e2πi/n ∈ C. Then, we
have a non-trivial, thus non-permutation representation:

ρ ∶ Z/nZ→ GL1(k) = k×, ρ(m) = ωm.
1.2. Modern Representation Theory.

Definition 1.8. A representation of G (over k) is a homomorphism

G→ GL(V ) = {k-linear invertible maps V → V }.
V is a vector space over k, or a free module over commutative ring k.

Suppose dimV < ∞. Let (v1, . . . , vn) be an ordered basis V ≅ kn, which means GL(V ) ≅
GLn(k). This means that ρ ∶ G → GL(V ) ≅ GLn(k) gives a matrix representation. Conversely,
GLn(k) ≅ GL(kn), so matrix representations give representations on kn. The other way to define
a representation instead of k-linear invertible maps, is action of G on V by linear maps. “gv”
= ρ(g)(v).

We also say that V is a G-module, (V, ρ).
Definition 1.9. A G-module homomorphism φ ∶ V →W (over k) is a k-linear map s.t.

φ(gv) = gφ(v), ∀g ∈ G,v ∈ V.
Definition 1.10. A submodule (or invariant subspace) is a subspace W ⊆ V such that

gw ∈W,∀g ∈ G,w ∈W.
(i.e. W ↪ V is a homomorphism, for some G-action on W .)
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Definition 1.11. An isomorphism is an invertible homomorphism (an inverse linear map will also
be a homomorphism).

Definition 1.12. Quotient module: given W ⊆ V , make G act on V /W by g(v +W ) = g(v) +W .
This is well defined, since:

v +W = v′ +W ⇒ v − v′ ∈W ⇒ g(v − v′) ∈W ⇒ gv +W = gv′ +W.

Definition 1.13. V is irreducible if V ≠ 0 and its only submodules are 0 and V .

Question 1.14. When do two matrix representations ρ, ρ′ belong to isomorphic G-modules V ≅W?

Let V have basis v1, . . . , vn, and W have basis w1, . . . ,wn. This is the same question as when
ρ, ρ′ come from two bases of V .

Answer: They are isomorphic iff ∃S ∈ GLn(k) s.t. ρ′(g) = Sρ(g)S−1, for any g ∈ G.

Example 1.15. Consider again the standard representation, but instead of a homomorphism into
GLn(k), think about it as an action of Sn on kn = V , where k = C.

The subspace U = C ⋅
⎛
⎜
⎝

1
⋮
1

⎞
⎟
⎠

is invariant and the action of Sn on U is trivial. Furthermore,

dimU = 1.
Another invariant subspace is W = {z ∶ ∑ zi = 0}; this has dimension n − 1. U ∩W = ∅, so by

dimension, V = U ⊕W . This implies that W ≅ V /U and U ≅ V /W .
Take S3, so that dimW = 2. Consider the image of the map W ↪ V → V /U . The basis

e1, e2, e3 ↦ ē1, ē2, ē3. However, these are linearly dependent, so we take only two of them, say
ē1, ē2 ⇒ ē3 = −(ē1 + ē2).

ρ((12)) = ( 0 1
1 0

) ρ((12))2 = I2

ρ((23)) = ( 1 −1
0 −1

) ρ((23))2 = I2

ρ((123)) = ρ((12))ρ((23)) = ( 0 −1
1 −1

)

2. Monday, August 27, 2012

Example 2.1. Recall: We consider the standard representation as an action of Sn on V = kn.

The subspace U = k ⋅
⎛
⎝

1
⋮

1

⎞
⎠

is a 1-dimensional submodule with trivial representation.

W = {z ∶ ∑ zi = 0} is an (n − 1)-dimensional submodule
If char k = 0, then V = U ⊕ W , W ≅ V /U and U ≅ V /W . What if char k = p∣n? Then

U ⊆W,V ≠ U ⊕W . In this case W ⊆ V has no ⊕ complement U ′.
Suppose it does. Every ei − ej ∈ W , so V /W is trivial. So a U ′ would have to be k ⋅ v where

π ⋅ v = v for all π ∈ Sn ⇒ v ∈ U . Contradiction.

More generally, problems arise when the characteristic divides the order of the group.

Proposition 2.2. Back to k = C. W is irreducible. Equivalently, every nonzero v ∈ W generates
W ; Sn ⋅ v spans W .
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Proof. Let v =
⎛
⎝

z1
⋮

zn

⎞
⎠

, such that ∑ zi = 0, not all 0, so not all equal. W.l.o.g. take z1 ≠ z2.

Consider v − πv, π = (12). This is (z1 − z2)
⎛
⎜⎜⎜
⎝

1
−1
0
⋮

0

⎞
⎟⎟⎟
⎠

This means that e1 − e2 ∈ span(Sn ⋅ v); by symmetry, ei − ej ∈ span(Sn ⋅ v) for all i, j. Therefore,
span(Sn ⋅ v) =W . �

Remark 2.3. Suppose char p∣n, and
0 ⊂ U ⊂W ⊂ V

Then, U = U/0 is irreducible, V /W is irreducible, and W /U is irreducible. (perhaps not for p = 2).

Definition 2.4. Let k be a commutative ring. The group algebra kG = free k-module with basis
G, with multiplication defined by

(∑
g∈G

agg)(∑
g∈G

bgg) = ∑
g,h∈G

agbhgh.

This inherits associativity from the group, and the group identity becomes 1 for kG. (One could
define the algebra over a noncommutative ring, but we are interested in the k-algebra structure
that commutativity gives it.)

Regard this as a k-algebra by k → kG, sending a↦ a ⋅ 1.

Remark 2.5. The set of G modules over k (i.e. k-module V , plus k-linear action of G on V ) can
be canonically identified with kG-modules. Given G-module V (over k) make kG act by

(∑agg)v =∑agg(v),
and it is easy to see that this is a group action.

Conversely, if V is a kG-module, then G → kG mapping g ↦ g is a homomorphism G → (kG)×
of groups giving a G action on V .

One can also define an algebra where the group acts on the ground ring. The resulting multipli-
cation looks like:

(∑
g∈G

agg)(∑
g∈G

bgg) = ∑
g,h∈G

agg(bh) ⋅ gh.

2.1. Modules over Associative Algebras. Our convention will be to talk about left modules.
Generalities on A-modules where A is an associative algebra with unit, over some commutative

ring k. (If k = Z, we mean non-commutative rings with unit)
Important Concepts:

● Submodule
● quotient V /W
● Irreducible means V ≠ 0 and only submodules are 0 and V .
● Direct sums
● Indecomposable = not a proper ⊕. Irreducible implies indecomposable, but not the converse.
● Module homomorphisms.
● Submodule W ⊂ V , then 0→W → V → V /W → 0 is an exact sequence.
● Given 0→K → V → Q→ 0, we say that V is an extension of Q by K.
● An A-module V is Aritinian if every chain of distinct submodules is finite. (Implication:

Artinian ⇒ Noetherian)

Proposition 2.6. Every submodule, quotient and extension of Artinian modules is Artinian.
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3. Wednesday, August 30, 2012

Definition 3.1. Recall: an A-module V is Artinian if it has no infinite chain of submodules. (ACC
+ DCC)

Remark 3.2. If V is Artinian, a maximal chain looks like:

0 = V0 ⊂ V1 ⊂ ⋯ ⊂ Vm = V,
where each Vi/Vi−1 is simple. Such a chain is called a composition series. The Vi/Vi−1 are called
composition factors.

Proposition 3.3. Every submodule, quotient and extension of Artinian modules is Artinian.

Proof. Submodules and quotients are obvious. For extension, we are given W ⊆ V , W Aritinian,
V /W Artinian. We want to show that V is Artinian.

Given
V ′ ⊆ V ′′ ⊆ V,

we can send it to a chain in W , by

V ′ ∩W ⊆ V ′′ ∩W ⊆W
as well as a chain V /W by

(V ′ +W )/W ⊆ (V ′′ +W )/W ⊆ V /W.
The composition factors in each of these modules:

(V ′′ ∩W )/(V ′ ∩W ) ⊆ V ′′/V ′, V ′′/V ′ → (V ′′ +W )/(V ′ +W ).
In the corresponding exact sequence:

0→ V ′′ ∩W
V ′ ∩W

→ V ′′

V ′ →
V ′′ +W
V ′ +W

→ 0.

Alternatively, consider the following:

(V ′ +W ) ∩ V ′′ = V ′ + (W ∩ V ′′) (modular law).

This gives us a W ′ between V ′ and V ′′.

V ′ ∩W = V ′′ ∩W and V ′ +W = V ′′ +W ⇒ V ′ = V ′′.

Given (Vi) in V ,
Vi ↦ (Vi +W,Vi ∩W ),

an injective map into the product of finite chains. Therefore, the pre-image chain is also finite.
You can also think about this in the purely formal realm of modular lattices. �

Theorem 3.4 (Jordan-Hölder Theorem). If (Vi) and (V ′
i ) are two composition series for V , then

they have the same length, say n and there is a permutation π of {1,2, . . . , n} such that V ′
i /V ′

i−1 ≅
Vπ(i)/Vπ(i)−1.

Proof. The proof follows by induction on the length of composition series. Consider two chains
(Vi) and (V ′

i ).
Suppose that V1 = V ′

1 . Then, V /V1 ≅ V /V ′
1 have decomposition series of the same length by

induction.
So, we take V1 ≠ V ′

1 . Consider the submodule V1 +V ′
1 . There exists a composition series (Wi) for

V /(V1 + V ′
1) by the proposition. So the chain (0, V1,Wi) and the chain (0, V1,Wi) have the same

length. By induction, the chain (Vi) and (V ′
i ) will therefore have the same length.

Again this could be formulated in a lattice-theoretic way. �
4
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Proposition 3.5. The following are equivalent (for an A-module V ):

(1) Every U ⊆ V has a ⊕ complement: V = U ⊕W .
(2) V is a direct sum of simple submodules.

In this case, V is called completely reducible, or semisimple.

Lemma 3.6. Property (1) in the proposition is preserved by quotients.

Proof.

Û ⊆ V /W ↔W ⊆ U ⊆ V, V = U ⊕U ′ ⇒ V /W = U/W + Ū ′,

where Ū ′ is the image of U ′ ⊂ V → V /W .
�

Lemma 3.7. Property (1) implies that V contains a simple submodule or V = 0.

Proof. Pick a nonzero v ∈ V . Let M ⊆ V be maximal such that v ∉ M . Let v̄ = the image of v in
V /M .

Then, v̄ ≠ 0 belongs to every nonzero submodule of V /M i.e. Av̄ is the smallest nonzero submod-
ule of V /M , hence simple. So V /M has a simple submodule. Because V =M ⊕N , then N ≅ V /M ,
so N has a simple submodule and so does V . �

Proof of Proposition 3.5. (1) ⇒ (2). Let Ui be a maximal collection of simple submodules, such
that ∑Ui = ⊕Ui, i.e. if uik ∈ Uik where i1, . . . , im are distinct, then ∑uik = 0 implies that all uik = 0.

If V = ∑Ui, we are done. If V = U ⊕W , then W ≅ V /U . By the lemma, W has a simple
submodule U ′. But ∑Ui +U ′ =⊕Ui ⊕U ′, contradicting maximality.

�

4. Friday, August 31, 2012

Proof of Proposition 3.5 Continued. (2) ⇒ (1). Let V = ⊕I Ui. Given U , let J ⊆ I be a maximal
subset such that W ∶=⊕i∈J Ui has W ∩U = 0.

Claim: W + U = V , i.e. the quotient of U → V /W is surjective. V /W ≅⊕
i∉J
Ui. Then some Ui

(i ∉ J) is not contained in

U ′ = im(U → V /W ≅⊕
i∉J
Ui).

So U ′ ∩ Ui = 0, with Ui simple. Therefore, (U +W ) ∩ (Ui +W ) = W ⇒ U ∩ (W + Ui) = 0. This
contradicts maximality of J ; therefore, U +W must be the whole module.

�

Recall that, under these conditions, V semi simple or completely reducible.

Corollary 4.1. Any submodule, quotient, or direct sum of semi simple modules is semisimple.

Next question: When are all A-modules semisimple?
More about simple modules:

Lemma 4.2 (Schur’s Lemma). If V,W simple modules, then any homomorphism ϕ ∶ V → W is
either 0 or an isomorphism.

Proof. Consider the possible submodules to play the role of kernel and image. �

Corollary 4.3. If V /≅W , then HomA(V,W ) = 0. EndA(V ) = Hom(V,V ) is a division ring.
5
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We can also make statements about semisimple modules.

If V =⊕Vi and W =⊕jWj , then

Hom(V,W ) =∏
i

Hom(Vi,W ).

Assuming both index sets are finite, then

Hom(V,W ) =⊕
i
⊕
j

Hom(Vi,Wj).

Finally, if we index the modules as V = ⊕λ V
mλ
λ , and W = ⊕λ V

nλ
λ , such that λ ≠ µ⇒ Vλ ≠ Vµ,

with the index set finite. Then,

Hom(V,W ) =⊕
λ

Hom(V mλ
λ , V nλ

λ ) =Mmλ×mλ(EndA(Vλ)).

and EndA(V ) =⊕
λ

Mnλ×nλ(Dλ),

where Dλ is the division ring End(Vλ).

4.1. Jacobson Radical of A. Let V be a simple A-module. Any 0 ≠ v ∈ V generates V as Av = V .
Let m = annA(v). Then m is a maximal left ideal.

A/m ∼→ V, a↦ a ⋅ v.
Therefore, A/m ≅ A/m′ ≅ V , when m,m′ are annihilators of different v, v′ ∈ V .

Example 4.4. A =Mn(k). Then, V = kn. m = { matrices killing a vector v}.

We can group the maximal ideals as those that kill elements in the same simple module.

⋂
m⋅A/m≅V

m = ann(V ) = ker(A→ Endk(V ))

is a two-sided ideal.

Definition 4.5. The (left) Jacobson radical J(A) is defined as

J(A) = ⋂
m maximal left ideal

m = ⋂
V of each iso. type

ann(V ).

By theorem, the right and left Jacobson radicals are equal.

Proposition 4.6.

A→∏
V

End k(V )→ End k (⊕
V

V ) .

By Schur’s Lemma, the second arrow is isomorphism. J(A) is the kernel of the first map. A has
a faithful semisimple module if and only if J(A) = 0. A/J(A) has a faithful semisimple module,
since J(A/J(A)) = 0.

Theorem 4.7. The following are equivalent (for k-algebra A):

(1) A is a semisimple left A-module.
(2) A is isomorphic to a finite product ∏m

i=1Mni(Di) of matrix algebras over division rings.
(3) A is Artinian (as a left A-module) and J(A) = 0.
(4) Every left A-module is semisimple.

Proof. (4)⇒ (1) trivial. (1)⇒ (4) almost trivial: Every A-module is a quotient of a free module

⊕A. Quotients of semisimple modules are semisimple. (2)⇒ (3) not too bad.
�
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5. Wednesday, September 5, 2012

Proof of Theorem 4.7 Continued. (1) ⇒ (2). Note that any A with unit has Aop → End A(A), with
a ↦ ϕ(x) = xa. This is actually an isomorphism, with inverse ϕ ↦ ϕ(1). Suppose A is semisimple,
i.e. A = ⊕k

i=1 V
ni
i , with Vi simple and Vi ≠ Vj for i ≠ j. (1) ⇒ A is a finite direct sum of simples

because A is finitely generated.

Aop ≅ End A (
k

⊕
i=1

V ni
i ) =

k

∏
i=1

End (V ni
i ) =

k

∏
i=1

Mni(D
op
i ), where Dop

i = End Vi.

(2) ⇒ (3). Mn(Di) (and also A) has a simple module Dn
i = Vi. e1 = (1,0, . . . ,0) generates. For

0 ≠ v ∈Dn
i there is a matrix X such that X ⋅v = e1. This implies that A acting on ⊕Dni

i is faithful,
so J(A) = 0.

Note that A ≅A−mod ⊕i V
ni
i ⇒ A is Artinian.

(3) ⇒ (1). General fact: For a module V , and Ui a family of submodules, such that ⋂ki=1Ui = 0

and Uj +⋂j−1
i=1 Ui = V , for all j = 1, . . . , k, and given x ∈ V /Uj there is a v ∈ V such that v ↦ x and

v ∈ kerφj−1. . Then the map ϕ ∶ V →⊕k
i=1 V /Ui is an isomorphism.

Proof: It is injective, because kerϕ = ∩Ui = 0.

By the second hypothesis, if φj−1 is surjective, so is φj ∶ V → ⊕j
i=1 V /Uj . By induction, ϕ is

surjective.
Given (3), construct maximal left ideals m1,m2, . . . ,mk as follows. If m1 ∩⋯ ∩mj−1 = 0 for all j,

then we are done (Since J(A) = 0⇒ A is semisimple). If not, then...
�

Corollary 5.1. Assume A is semi simple. Then,

(1) A has finitely many simple modules Vi up to isomorphism.
(2) Vi is Dni

i as an A-module via Mni(Di).
(3) A has central, orthogonal idempotents ei such that ei acts on Vi as 1 and on Vj , j ≠ i as 0.

(4) In V = ⊕k
i=1(⊕J Vi) (where J is a possibly infinite indexing set), the summands ⊕J(Vi) =

im e1 are unique (isotopic components).

(5) A-mod is categorically equivalent to ∏k
i=1Di-mod.

5.1. Back to kG-modules (G modules over k).

Remark 5.2. Homk(V,W ), is the group (k-module) of k-module homomorphisms from V to W .

Given W
ϕ
→W ′, we get a map

Hom(V,W )
Hom(V,ϕ)
Ð→ Hom(V,W ′), α ↦ φ ○ α.

This respects commutative diagrams, so Hom(V,−) is a functor from k-mod → Ab (or to k-mod,
if k is commutative).

Similarly, Hom(−, V ) is a functor from (k-mod)op → (k-mod).

If G acts on V and H acts on W , then Gop ×H acts on Homk(V,W ). We check when H = G.
Then,

G→ G ×G→ Gop ×G acts on Homk(V,W ), g ⋅ ϕ = g ○ ϕ ○ g−1.

So Homk(V,W ) is a G-module.

Homk(V,W )G = {ϕ ∶ gϕ = ϕ, ∀g ∈ G} = HomkG(V,W ).
where gϕ = ϕ means g ○ ϕ = ϕ ○ g.

7
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Theorem 5.3 (Maschke’s Theorem). Let k be a field, and G a finite group, such that char k /∣ G.
Then kG is semi simple.

Proof. Given U ⊆ V kG-modules, we want W ⊆ V such that V = U ⊕W .

0→ U
i→ V

p
→ V /U → 0.

We want to split this – i.e. we want h ∶ V /U → V such that ph = 1V /U .
We can find a k-linear map j ∶ V /U → V such that pj = 1V /U , where j ∈ Homk(V /U,V ). We want

h ∈ Homk(V /U,V )G, invariant under G action.
The desired map is R = 1

∣G∣ ∑g g ∈ kG. �

6. Friday, September 7, 2012

Lemma 6.1 (Properties of the Reynolds Operator). R2 = R, and R acts in any kG-module V as
a projection on

V G = {v ∈ V ∶ gv = v,∀g ∈ G}.
R(V ) = V G and R∣V G = 1V G.

Proof.

h ⋅Rv = 1

∣G∣ ∑g∈G
hg ⋅ v = Rv⇒ Rv ∈ V G.

v ∈ V G ⇒ Rv = 1

∣G∣
∣G∣v = v.

�

Proof of Theorem 5.3 Continued. Define h = R(j), where j was the vector-space map from above.

h ∈ Homk(V /U,V ) = HomkG(V /U,V ).

Note that

Homk(V /U,V )Ð→ End k(V /U), j ↦ pj

is G-homomorphism, since p is G-invariant:

g(pj) = gpjg−1 = pgjg−1 = pg(j).

So, ph = pR(j) = R(pj) = R(1V /U) = 1V /U ∈ End k(V /U). �

Recall that if A is semi simple, in A we have central orthogonal idempotents ei, act as projections
on isotypic components in V =⊕i(⊕I Vi). Specifically, A ≅∏iMn(Di).

What is R? It is the ei for Vi = k (the trivial representation).
In some sense, the representations over an algebraically closed field will be finer than the rep-

resentations in non-algebraically closed subfields; the representations will “clump together” when
you pass to the subfield.

Lemma 6.2. If k = k̄, the only finite dimensional division algebra over k is k.

Proof. k ⊆D,x ∈D, then k(x) is commutative, hence k(x) = k. �

Corollary 6.3. If k = k̄, char k /∣ ∣G∣, then kG ≅ ∏iMni(k). The non-isomorphic simple kG-
modules are Vi =Mni(k)-module kni.

Corollary 6.4. For k = k̄ and char k ok, if V1, . . . , Vr are the simple kG modules up to isomorphism,
then ∑i dim(Vi)2 = ∣G∣.

8
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Example 6.5. G = S3. We have V1 = C trivial representation. C3 ≅ V1 ⊕W gives us V2 a 2-
dimensional representation. So 6 = 12 + 22 + n2 ⇒ n = 1, so we have a missing one-dimensional
representation. The missing one is the sign rep Vε, which sends each permutation to its sign. This
set of representations gives us a map G→M1 ×M2 ×M1, which implies kG ≅M1 ×M2 ×M1.

(k = k̄, char k /∣ ∣G∣). Then, dimZ(kG) = number of simple modules. Alternatively,

Z(kG) = {∑
g

agg ∶ ag is constant on conjugacy classes},

since being in the center also means that it is invariant under conjugation.
Suppose G is abelian (k = k̄, char k /∣ ∣G∣). Then kG ≅ ∏iM1(k), i.e. all simple modules have

dimension 1. They are given by homomorphisms G → k×, more specifically G → roots of 1 in
k → k×; the set of roots ≅ Q/Z in char 0, or “enough” of Q/Z in char p.

Definition 6.6. The dual group Ĝ = HomAb(G,Q/Z). So ∣Ĝ∣ = ∣G∣, but there is no canonical
isomorphism.

Corollary 6.7. kG ≅⊕V dimVi
i , as a kG-module.

Corollary 6.8. Maschke’s Theorem implies that all g ∈ G acting on V are simultaneously diago-
nalizable.

Definition 6.9. Let A be a ring, N an A-module, and M an Aop module. Then, M ⊗A N is an
abelian group generated by symbols m ⊗ n, where m ∈ M , n ∈ N , with relations (m +m′) ⊗ n =
m⊗ n +m′ ⊗ n,m⊗ (n + n′) =m⊗ n +m⊗ n′,ma⊗ n =m⊗ an.

The motivating property is that M ×N →M⊗N is Z-linear in each variable and “A-associative.”

It satisfies the universal property:

M ⊗N
φ

// Q

M ×N
●

;;

⊗

OO

where ● is a bilinear map with ●(ma,n) = ●(m,an).

7. Monday, September 10, 2012

More on the tensor product: If f ∶M →M ′ is a map of left A-modules and g ∶ N → N ′ is a map
of right A-modules.

M ⊗A N

f⊗g
��

M ×N //

88

M ′ ⊗A N ′

where m⊗ n↦ f(m)⊗ g(n). This map will satisfy:

f(ma)⊗ g(n) = f(m)a⊗ g(n) = f(m)⊗ ag(n) = f(m)⊗ g(an).
We can put left and right module structures on the tensor product, by multiplying in the right or
left component.

If k is commutative with M and N k-modules. View them as k-bimodules with same left and
right action. As a result, k acts on M ⊗k N from both right and left, and these actions are the
same. Therefore, M ⊗k N has a natural k-module structure.

9
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Remark 7.1. In some ways the tensor product M ⊗N “eats up” the action on M from the right
and N from the left, so that its only actions are inherited from the left action on M and the right
action on N .

Remark 7.2. Let M,N,P,Q be A-modules. The functor P ⊗ ⋅ is right-exact. Specifically, given
an exact sequence:

M
f
→ N

g
→ Q→ 0,

the following sequence is exact:

P ⊗AM
1⊗f
→ P ⊗A N

1⊗g
→ P ⊗A Q→ 0.

Example 7.3. Consider the sequence

0→ Z ⋅2Ð→ ZÐ→Z/2Z→ 0.

We apply the functor Z/2Z⊗Z ⋅ to the sequence, and obtain:

0→ Z/2Z ⋅2=0Ð→ Z/2Z 1Ð→ Z/2Z→ 0.

So, the surjections are preserved, but the injection is not; thus “right-exact”.

Remark 7.4. In the example, we used the basic fact that A ⊗AM ≅ M , by the canonical maps
a⊗m↦ am,m↦ 1⊗m.

Corollary 7.5. Let M ≅ (⊕I A), a free right A-module. ⇒M ⊗A N =⊕I N .

Corollary 7.6. Let k be a field, and M,N vector spaces with bases {mi},{nj} respectively. Then,
M ⊗k N is a vector space with basis {mi ⊗ nj}.

Proposition 7.7. Let V,W be kG-modules. Then V ⊗kW is again a kG-module.
g(v⊗w) = gv⊗gw. In other words, we have linear maps g ∶ V → V, g ∶W →W ; so, we can tensor

them to obtain g ⊗ g ∶ V ⊗W → V ⊗W .

Let A,B be k-algebras, with k commutative. Let V be an A-module, and W be a B-module.
A⊗k B is a k-algebra with multiplication

(a⊗ b)(a′ ⊗ b′) = (aa′ ⊗ bb′).
Additionally, V ⊗kW is an A⊗k B-module.
Based on this, V and W as described in the Proposition will have V ⊗kW be a priori a kG⊗k kG-

module. The tensor product can also be expressed as k(G×G), since the basis is described by pairs
of elements, but the diagonal map G→ G ×G induces a kG structure on the module.

To further explain this, keep V and W A-modules.
A⊗k A acts on V ⊗kW , and Aop ⊗k A acts on Homk(V,W ).
We have a bunch of maps:

kG
∆Ð→ kG⊗k kG, g ↦ g ⊗ g.

kG
s→ kGop, g ↦ g−1.

(s⊗ 1) ○∆ gives the map:
kG→ kGop ⊗ kG, g ↦ g−1 ⊗ g.

Then given ϕ ∶ V →W , g(ϕ) = g ○ ϕ ○ g−1.
We need the following to commute:
We also have a counit ε ∶ kG→ k = End k(k), mapping g ↦ 1, and the unit u ∶ k → A, with x↦ x.
Then kG is a co-commutative Hopf Algebra. k ⊗k V ≅ V . And V ∗ = Homk(V, k). V finite

dimensional, V ∗ ⊗kW ≅ Homk(V,W ).
kGop

S→ kG.
10
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kG
∆ //

∆
��

kG⊗ kG

1⊗∆
��

kG⊗ kG ∆⊗1
// kG⊗ kG⊗ kG

8. Wednesday, September 12, 2012

8.1. Characters. Assume that char k = 0, and that k = k̄. (Specifically, k = C). Let V be a
finite-dimensional kG-module.

Definition 8.1. The Character χV (g) = trV (g), i.e. the trace of its action as a matrix on the
vector space.

Remark 8.2. Note that χV (hgh−1) = trV (hgh−1) = trV (g) = χV (g). So the character is constant
on conjugacy classes. So, χV is a “class function.”

Remark 8.3. What is χV ⊕W ? Choosing bases for V and W , a given g has an action on V
determined by a matrix M , and on W by a matrix N . So, the action of the direct sum is determined
by the matrix

( M 0
0 N

)

Therefore, trV ⊕W (g) = trV (g) + trW (g).

Remark 8.4. Let the k-algebra A be a finite dimensional V -module, with a ∈ A. Take a subspace
U ⊆ V , and the quotient V /U .

The matrix representing the action of a will look like:

( M ∗
0 N

)

where M describes the action on U and N describes the action on V . Therefore, trV (a) = trU(a)+
trV /U(a), even though they are not direct summands.

Remark 8.5. What is the character on a tensor product V ⊗W? The vector space V ⊗W has
basis {vi ⊗wj}. The matrix of g will have (i, j), (i′, j′) entries, i.e. Mii′Njj′ . Therefore,

χV ⊗W (g) =∑
i,j

MiiNjj = tr(M)tr(N) = χV (g)χW (g).

Remark 8.6. Consider now, χV ∗(g), the character on the dual space. Let {ξi} be the dual basis
of V ∗. Define an inner product ⟨ξi, vj⟩ = δij , which satisfies:

⟨gξi, vj⟩ = ⟨ξi, g−1vj⟩.
(This fact comes from the functorial definition by which G acts compatibly on everything.) The
matrix of g on V ∗ is (M−1)T .

In the case of k = C, this implies χV (g−1) = χV (g).

Remark 8.7. These results immediately give us:

χHom(V,W )(g) = χV ∗⊗W (g) = χV (g−1)χW (g).

Remark 8.8. Recall the Reynolds operator, defined as:

R = 1

∣G∣ ∑g∈G
g ∈ kG.

11



Zvi Rosen Representation Theory Notes Mark Haiman

Then R acts on V by projection onto V G. So, χV (R) = dimV G. We can also explicitly calculate
the character from the formula, which leads to:

χV (R) = dimV G = 1

∣G∣ ∑g∈G
χV (g).

We observe:

dim HomG(V,W ) = dim Homk(V,W )G = 1

∣G∣ ∑g∈G
χV (g−1)χW (g) = ⟨χV , χW ⟩.

This leads to the following definition:

Definition 8.9.

⟨x,ϕ⟩ = 1

∣G∣ ∑g∈G
χ(g−1)ϕ(g)

a symmetric, bilinear form on (class) functions G→ k.
[When k = C, we can define this as

(x,ϕ) ∶= 1

∣G∣ ∑g∈G
x(g)ϕ(g),

a Hermitian, positive definite form.]

Lemma 8.10. The number of irreps is the same as the number of conjugacy classes.

Proof. A semisimple module is the direct sum of modules over division algebras. Each matrix is
an irreducible representation.

Any element in the center of kG corresponds to scalar multiples of the identity matrix in each
module, so the dimension of the center is also equal to this value. (See Example 6.5) �

Schur’s Lemma + the formula above + the fact that the number of irreps = the number of
conjugacy classes imply

Theorem 8.11. The characters {χV ∶ V irreducible } form an orthonormal basis of the space of

class functions. In particular, if V =⊕i V
di
i , then

di = ⟨χV , χVi⟩⇒ χV =∑diχVi ⇒ ⟨χV χV ⟩ =∑d2
i

Corollary 8.12.
⟨χV , χV ⟩ = 1⇔ V irreducible.

Example 8.13. V = kX, permutation representation of G acting on X. Then χV (g) = ∣Xg ∣, the
subset fixed by g. This implies:

dimV G = # orbits = 1

∣G∣ ∑g∈G
∣xg ∣,

known as Burnside’s formula.

Example 8.14. V = Cn acted on by Sn. We start with the trivial representation = C(1, . . . ,1).
We are left with V = 1⊕W .

χV (π) = ∣[n]π ∣.

⟨χV , χV ⟩ = 1

n!
∑
π

∣[n]π ∣2 = 1

n!
∑
π∈Sn

∣([n] × [n])π ∣ = 1

n!
∑
π

χV ⊗V (g)

which is the number of orbits of Sn on [n] × [n], i.e. 2. Therefore, W is irreducible.

Proposition 8.15. kX = 1⊕ irreducible if and only if G’s action on X is doubly transitive.

12
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9. Friday, September 14, 2012

Example 9.1. G = GLn(Fq). Note that

Pn−1(Fq) = {(x1 ∶ ⋯ ∶ xn)∣ not all xi = 0}/F×q
G acting on Pn−1(Fq) is doubly transitive. C ⋅ Pn−1(Fq) = 1⊕ V , where

dimV = ∣Pn−1(Fq)∣ − 1 = q
n − 1

q − 1
− 1 = q(1 +⋯ + qn−2).

Example 9.2 (Characters of S4). The number of conjugacy classes is equal to the number of
partitions of 4, i.e. 5. The irreducible representations: we have the trivial rep 1, we know that C4

decomposes as 1⊕W , for W irreducible from the Proposition, and we have ε, the sign representation.
We also guess a tensor, ε⊗W (since any tensor with 1 would be trivial).

We obtain the character χW by finding the values of χC4 and subtracting the trivial representa-
tion.

To obtain the character χ?, we observe that we have a representation kG, with

χkG(g) =
⎧⎪⎪⎨⎪⎪⎩

∣G∣ g = 1

0 g ≠ 1

If we decompose kG ≅ ⊕V di
i for Vi irreducible, we will have 24 = 1+1+9+9+x2, for the remaining

representation of dimension x. So the dimension is 2.

⟨χkG, χV ⟩ = ⟨χkG, χV ⟩ = 1

∣G∣ ∑g∈G
χkG(g−1)χV (g) = χV (1).

So, we take (24,0,0,0,0)−(1,1,1,1,1)−(1,−1,1,1,−1)−(9,3,−3,0,−3)−(9,−3,−3,0,3) = (2,0,2,−1,0).

(14) (2,12) (2,2) (3,1) (4)
[1] [6] [3] [8] [6]
1 (12) (12)(34) (123) (1234)

χ1 1 1 1 1 1
χW 3 1 − 1 0 − 1
χ? 2 0 2 −1 0

χε⊗W 3 −1 −1 0 1
χε 1 −1 1 1 −1

The last mysterious irrep corresponds to the quotient of S4 by its normal subgroup.

Given simple kG-modules V1, V2, . . . , Vm, such that kG ≅ ⊕End k(Vi), we have a projection
operation ei ∈ Z(kG) such that ei acts on Vi as the identity, and on any other Vj as 0.

How do we find this ei? We know that ei ∈ ∑agg where ag is constant on conjugacy classes.

χVj(ei) = δijχVi(1) =∑agχVj(g) =∑
g

α(g)χV ∗
j
(g−1) = ∣G∣⟨α,χV ∗

j
⟩.

where we define α(g) = ag. This last expression implies that α = χVi
χVi(1)

∣G∣ .

So ei =
χVi(1)

∣G∣ ∑χV ∗
i
(g)g.

Remark 9.3. Let H ⊆ G, the G-module V has a corresponding H-module ResGH(V ), i.e. kH ⊆ kG.

Starting with k-algebras B ⊆ A, an A-module V maps to a B-module ResAB(V ).
Additionally, if we start with a B-module W , the tensor product A ⊗B W is a left A-module

IndAB(W ). In fact, these functors are adjoint.

13
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Theorem 9.4. Let A,B be groups and V,W be modules such that A acts on V , B acts on W .
Then,

HomB(W,ResABV ) ≅ HomA(IndABW,V ).
Specifically, IndAB and ResAB are adjoint.

10. Wednesday, September 19. 2012

[Was absent for Monday, September 17 for Rosh Hashanah]

Example 10.1. Let Sn act on V = Cn be the permutation representation. Let Sk ×Sn−k ⊂ Sn. Let
ε ⊠ 1 be the 1-dimensional representation of Sk × Sn−k in which ρ(w, z) = sign(w).

Proposition 10.2.

IndSnSk×Sn−kε ⊠ 1 ≅ ∧kV.

Proof. To give

ϕ ∶ IndSnSk×Sn−kε⊗ 1 →
Sn
∧kV

is equivalent to giving

ψ ∶ ε⊗ 1 →
Sk×Sn−k

Res ∧k V

Let v be a generator of ε⊗ 1. Simply send v ↦ v1 ∧⋯∧ vk, where {vi} is a basis of V , and extend.
Therefore, ϕ is surjective, and it is bijective since the dimension is (n

k
) on both sides.

⟨χ∧kV , χ∧kV ⟩ = ⟨ε ⊠ 1,Res ∧k V ⟩Sk×Sn−k .

= dim HomSk×Sn−k(ε⊗ 1,∧kV ) = ⟨u ∈ ∧kV ∶ u Sn−k-invariant ,w(u) = sign(w)u for w ∈ Sk⟩
The operator

A = 1

k!
∑
w∈Sk

sign(w)w ∈ CSk

acts in any Sk-module as projection on the ε component.

I = {i1 < ⋯ < ik} ⊆ {1, . . . , n} = [n].
The wedge products vI = vi1 ∧⋯vik are a basis of ∧kV .

We know:
AvI = 0 if ∣I ∩ [k]∣ < k − 1.
Av[k] = v[k].
For j > k, we have A(v[k]∖i0 ∩ vj) = ±∑

k
i=1(−1)iv[k]∖i ∧ vj .

So this gives us

HomSk×Sn−k(ε⊗ 1,∧kV ) = span(v[k],
n

∑
j=k+1

k

∑
i=1

v[k]∖i ∧ vj).

So the inner product ⟨χ∧kV , χ∧kV ⟩ = 2, and 0 < k < n. ⇒ ∧kV is direct sum of 2 distinct
irreducibles.

V = 1⊕W Ð→ ∧kV = ∧kW ⊕ ∧k−1W.

�
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10.1. Character Theory of Sn.

Definition 10.3. A partition of n is a sequence (λ1 ≥ λ2 ≥ ⋯ ≥ λl > 0) such that ∑λi = n.
l = the length of the partition.

Example 10.4. (5,2,1,1) is a partition of 9 of length 4. The Young diagram for this partition is:

We obtain its transpose by reflecting across the line y = x. So, the transpose is:

Reading off the new partition, we obtain λ∗ = (4,2,1,1,1). Explicitly, λ∗i is the number of parts
≥ i in λ.

We induce a partial order on partitions of n, saying λ ≤ µ if and only ifλ1 +⋯+λk ≤ µ1 +⋯+µk,
for all k. For example, (5,2,1,1) ≥ (4,3,1,1).

The conjugacy classes of Sn are in bijection with the partitions of n.
Given ∣λ∣ = n define the representations of Sn. Let Sλ = Sλ1 ×⋯ × Sλl ⊆ Sn.

Σλ = IndSn
S∗
λ
1

Wλ = IndSnSλε.

dim(Σλ) = dim(W ∗
λ ) =

n!

λ1!⋯λl!
= ( n

λ1, . . . , λl
)

ΣCXλ = CTλ
where Xλ = { words in letters 1λ1 ,2λ2 , . . .}.

Stab(1⋯12⋯2⋯l⋯l) = Sλ.

Example 10.5.
w = 12213311.

↕
5 6
2 3
1 4 7 8

S8 acts by permuting the numbers. Tλ = “row tabloids” = fillings Y (λ) → [8] modulo row
permutation.

Wλ = action of Sn on “column tabloids” = C{ fillings Y (λ) → [n]} modulo signed column
permutation.

Under this equivalence, e.g.,

6
2 5 4
1 3 7

=
1
2 3 7
6 5 4

.

⟨χΣλ , χWµ⟩ = dim HomSn(Σλ,Wµ).
15
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This is 0 if λ /≤ µ and 1 if λ = µ. This means that they have exactly one common simple component,
Vλ. The Vλ’s are distinct.

11. Friday, September 21, 2012

We defined the following representations:

Definition 11.1.

Σλ = IndSnSλ1.

This is the permutation representation on row tabloids, in which you permute the entries of each
row.

Wλ = IndSnSλ∗
ε.

with action on CX, where X = {column tabloids}.

For convenience, let us designate the blocks acted on by Sλ1 , . . . , Sλl as

B1 = {1, . . . , λ1},B2 = {λ1 + 1, . . . , λ1 + λ2},B3 = ⋯.

Theorem 11.2. The dimension dim Hom(Σλ,Wµ) (equivalently, ⟨χΣλ , χWµ⟩) has:

dim Hom(Σλ,Wµ) =
⎧⎪⎪⎨⎪⎪⎩

0 λ /≤ µ
1 λ = µ

.

Proof.

dim Hom(Σλ,Wµ) = dimWSλ
µ .

RSλ kills a column tabloid T if any Bk has two members in one column of T .

RSλ(T ) ≠ 0⇒ λ1 +⋯ + λk ≤∑
i

min(µ∗i , k) = µ1 +⋯ + µk.

If λ = µ then equality holds above, so RSλ(T ) ≠ 0 ⇒ up to sign, T is of the form represented in
Figure 1. Then RSλ(T ) doesn’t depend (up to sign) on T . Therefore, it is 1.

B1

B2

B3

Figure 1. Tableaux with blocks in each row.

�

Recalling Σλ = IndSnSλ1, and Wλ = IndSnSλ∗
ε.

Let Σλ =⊕Vi and Wλ =⊕Wj , where the Vi’s and Wi’s are irreducible.
Then Σλ and Wλ have a unique Vi = Wj in common (with only one in each). This is due to

the theorem about the dimension above. Call it Vλ. If Vλ occurs in Wµ then λ ≤ µ i.e. Wµ ≅
Vµ⊕⊕λ<µ V

Kλµ
λ . However, we know that Vλ is in Sλ, so µ ≤ λ⇒ µ = λ. Hence the Vλ’s are distinct.

Example 11.3. W(2,1,...,1) = ε⊗ V(n−1,1).

16
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Example 11.4 (λ = (2,2)). Wλ has basis 1 3
2 4

, 1 2
3 4

. The irrep Vλ ⊆Wλ. Claim:

b = 1 2
3 4

+ 1 2
4 3

+ 2 1
3 4

+ 2 1
4 3

.

generates Vλ ⊆Wλ.

c = (13)b = − 1 2
3 4

− 3 1
4 2

− 1 3
2 4

− 2 1
4 3

.

(12)b = b. (12)c = −(b + c). (23)b = (12)c (23)c = c (34)c = −(b + c).
Having explored the group actions, we can write the matrices of the representation:

ρ((12)) = ( 1 −1
0 −1

) , ρ((23)) = ( −1 0
−1 1

) , ρ((34)) = ( 1 −1
0 −1

)

We also saw this as a representation of S4 by mapping to S3.

12. Monday, September 24, 2012

We know all of the irreps of Sn, but we don’t know anything about them.

Definition 12.1. The Frobenius ring is a graded ring R =⊕nX(Sn), where X(Sn) = {f ∶ Sn → C
such that f is constant on conjugacy classes}. R0 = C. Multiplication from X(Sk) × X(Sl) →
X(Sk+l) is given by

x ⋅ ϕ = IndSk+lSk×Slx ⊠ ϕ,
where x ⊠ ϕ is the function that acts as x ⊠ ϕ(w, z) = x(w)ϕ(z).

This multiplication is associative.
Additionally, the multiplication is commutative.

Sk × Sl

��

// Sk+l

Sl × Sk

::

The down arrow is isomorphism, by conjugating by the obvious permutation π ∈ Sn; so the ring
R is commutative.

What should we take as the basis for the graded piece X(Sn)?
An obvious strategy would be to have a basis element for each conjugacy class, taking the value

1 on that class and 0 on all others. However, it is better to normalize.

Definition 12.2. Let λ be a partition of n. We define the basis element πλ ∈ Rn =X(Sn) be zλ1Cλ
where

zλ =
n!

∣Cλ∣
= ∣Z(g)∣, for some g ∈ Cλ =∏

i

iriri!.

Remark 12.3. There are two ways to reach this formula. You can describe the centralizer of a
permutation of this type, which will be anything that swaps blocks, or rotates a cycle.

Alternatively count the size of a conjugacy class directly by first choosing blocks, then dividing
by the different ways to order blocks of equal size, then multiplying the different ways to order the
elements within each block. You arrive at ∣Cλ∣ = ∏λi∏ ri!. Dividing n! by this quantity gets the
desired result.

Remark 12.4. G,C ⊆ G conjugacy class. zC = ∣G∣
∣C∣ = ∣Z(g)∣, g ∈ C.

⟨x, zc1c⟩ =
1

∣G∣ ∑g∈G
zC1C(g)x(g−1) = x(g−1), g ∈ C.

17
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Remark 12.5. Let H ⊆ G subgroup, with C ⊆H conjugacy class, and Ĉ ⊇ C a conjugacy class in
G.

⟨x, IndGHzC1C⟩G = ⟨ResGHx, zC1C⟩H = x(h−1), h ∈ C
Therefore, IndGHzC1C = zĈ1Ĉ .

Remark 12.6. When you multiply conjugacy classes on different groups, you get the right function
on the conjugacy class of the bigger group containing the product. Specifically, take C ⊆ G, and
C ′ ⊆H, then C ×C ′ ⊆ G ×H.

1C ⊠ 1C′ = 1C×C′ ⇒ ZC×C′ = ∣G ×H ∣
∣C ×C ′∣

= zCzC′ ⇒ zC1C ⊠ zC′1C′ = zC×C′1C×C′ .

Therefore, πλπµ = πλ⊔µ. So if we define πk = π(k), then for any partition λ, πλ = πλ1⋯πλl . This
brings us to the following conclusion:

Theorem 12.7. The Frobenius ring R ≅ C[π1, π2, . . .] as a graded ring, where deg(πi) = i.

The inner product ⟨, ⟩Sn gives an inner product on Rn, which extends to a homogeneous ⟨, ⟩ on
R. Specifically,

⟨πλ, πµ⟩ = δλµzλ.
This gives us the following convenient fact for a character χ,

⟨χ,πλ⟩ = χ(g).

Proposition 12.8.

1Sn = ∑
∣λ∣=n

1

zλ
πλ.

εSn = ∑
∣λ∣=n

(−1)n−l(λ) 1

zλ
πλ.

Σλ = 1Sλ1⋯1Sλl .

Wλ = εSλ∗
1
⋯1Sλ∗

k

.

Proof. The first fact is a tautology.
Taking a permutation w ∈ Cλ, sign(w) = (−1)even parts of λ. The number of even parts of λ ≡

l(λ) −# odd parts ≡ l(λ) − n mod 2 ≡ n − l(λ) mod 2. �

Remark 12.9. The irreducible characters χλ of Sn (i.e. the character of the representation Vλ),
where n = ∣λ∣ satisfy the following;

⟨χλ, χµ⟩ = δλµ.
Σµ = χµ + ∑

λ>µ
Kλµχλ.

Wµ = χµ + ∑
λ<µ

Mλµχλ.

where Kλµ and Mλµ are positive integers, and “<” is the typical partial order on partitions.

Note that any two of those properties determine {χλ}.

Remark 12.10. Define Hk = 1Sk , and Ek = εSk . Then R = C[H1,H2, . . .] = C[E1,E2, . . .]. Even
more than that: Z ⋅ {χλ} = Z[H1,H2, . . .] = Z[E1,E2, . . .]. (Homogeneous and elementary polyno-
mials are integer bases for the symmetric functions.)

18



Zvi Rosen Representation Theory Notes Mark Haiman

13. Friday, September 28, 2012

[Class on Wednesday missed for Yom Kippur]
Last class we defined:

Λ ∶= Symmetric functions in x1, x2, . . .

mλ = xλ11 ⋯xλ
l

l +⋯.

ek = ∑
i1<⋯<ik

xi1⋯xik =m(1k).

eλ = eλ1⋯eλl .

pk =∑xki =m(k).

pλ = pλ1⋯pλl .
We proved that {mλ},{eλ},{pλ} are bases of Λ.

We now define:

hk = ∑
∣λ∣=k

mλ.

hλ = hλ1⋯hλl .

H(z;x) =H(z) ∶= ∑
n=0

znhn =∏
i

1

1 − zxi
,

since∏i
1

1−zxi = ∑n z
nxni , so the degree n part will result from all partitions of n into the contributing

variables.

E(z;x) ∶=
∞
∑
n=0

znen =∏
i

(1 + zxi).

Observe:

E(z) = 1

H(−z)
⇔ E(z)H(−z) = 1.

This gives us an identity in the coefficients:

∑
k+l=n

(−1)lekhl = δn0.

(we define e0 = h0 = 1 by convention.)
This in turn gives us a recursive formula for each! So that,

hk ∈ C[e1, . . . , ek], ek ∈ C[h1, . . . , hk].

i.e. C[e1, . . . , ek] = C[h1, . . . , hk] for all k.
This implies that {hλ} is a basis.

Remark 13.1. Additionally, the formula for the hk’s in terms of the ek’s is the same was the
formula for the ek’s in terms of the hk’s! This leads us to define the involution ω ∶ Λ→ Λ, such that

ω(ek) = hk ⇒ ω(hk) = ek ⇒ ω2 = id.
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Now we consider a generating function for the power sums:

∞
∑
k=1

pk
zk

k
=∑
k,i

xki z
k

k
=∑

i

ln
1

1 − zxi
= ln(∏

i

1

1 − zxi
) = lnH(z) = − lnE(−z).

This gives us the formula:

H(z) = exp
∞
∑
k=1

pk
zk

k
.

Mapping the log above via the involution ω, we obtain

lnE(z) = ∑
k≥1

pk
(−z)k

k
= ∑
k≥1

(−1)k−1pk
zk

k
.

This gives us the identity:

ω(pk) = (−1)k−1pk ⇒ ω(pλ) = (−1)∣λ∣−l(λ)pλ.

This sign coefficient is the sign of ω as an element of Cλ ⊂ Sn.

exp
∞
∑
k=1

pk
zk

k
=

∞
∏
k=1

exp(pk
zk

k
) =

∞
∏
k=1

(
∞
∑
r=0

prk
zkr

krr!
) .

Observe that:

hn = ∑
λ=(1r1 ,2r2 ,...)

pr11 p
r2
2 ⋯/1r12r2⋯r1!r2!⋯ = ∑

∣λ∣=n

pλ
zλ
,

where zλ is the size of the conjugacy class of λ.
By the involution this means that

en = ∑
∣λ∣=n

(−1)n−l(λ)pλ
zλ

.

We now have a map, F ∶ R ∼→ Λ, sending

πλ ↦ pλ

1Sk =Hk ↦ hk.

χΣλ =Hλ ↦ hλ.

εSk = Ek ↦ ek.

χW ∗
λ
= Eλ ↦ eλ.

− ⊗ ε↦ ω.

⟨ , ⟩↦ Hall inner product .

Definition 13.2. The Hall Inner Product is defined taking the following identity in R:

⟨πλ, πµ⟩ = δλµzλ,

and mapping to the corresponding identity in Λ:

⟨pλ, pµ⟩ ∶= δλµzλ,

and simply extend linearly.
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13.1. Cauchy Identity. Let V be a finite dimensional vector space, and ⟨ , ⟩ ∶ V ⊗ V → k a
non-degenerate bilinear form. Then:

⟨ , ⟩→ V
∼→ V ∗, v ↦ ⟨−, v⟩.

So,
V ⊗ V ∗ ≅ End k(V ).

which contains the identity. In this map, we have:

v ⊗ λ↦ ϕ(x) = λ(x)v.
Let v1, . . . , vn be a basis of V , and ξ1, . . . , ξn be the dual basis in V ∗. Then,

∑
i

vi ⊗ ξi ↦ 1 ∈ End (V ).

This means that ϕ(x) = ∑ viξi(x) = x.
So, as a general fact, if {vi} and {wi} are bases of V dual w.r.t. ⟨ , ⟩ i.e. ⟨vi,wj⟩ = δij , this gives

an identity element ∑i vi ⊗wi ∈ V ⊗ V ≅ V ⊗ V ∗.
So using the inner product from earlier, we obtain a special element

∑
∣λ∣=n

pλ ⊗ pλ
zλ

∈ Λn ⊗Λn.

We obtain a map:
Λ⊗C Λ→ Λ(x, y),

the symmetric functions in the two sets of variables, separately symmetric in each. In particular:

f ⊗ g ↦ f(x)g(y).
An obvious basis for this ring is {mλ(x)mµ(y)}, but we want a better one.
We observe that:

pk(x)pk(y) =∑xki ∑ ykj =∑
i,j

(xiyj)k ∶= pk(XY ) = pk(x1y1, x1y2, x2y1, . . .).

Then, for the power sum tensor from earlier:

∑
∣λ∣=n

pλ(x)pλ(y)
zλ

= ∑
∣λ∣=n

pλ(XY )
zλ

= hn(XY ).

Then,

∑
λ

t∣λ∣
pλ(x)pλ(y)

zλ
=∑

n

tnhn(XY ) =H(t;XY ) =∏
1

1 − txiyj
.

This implies that:

∑
λ

pλ(x)pλ(y)
zλ

=∏
i,j

1

1 − xiyj
.

This leads us to the Cauchy identity:

Theorem 13.3 (Cauchy Identity). For pλ,

∑
∣λ∣=n

pλ(x)pλ(y)
zλ

=∏
i,j

1

1 − xiyj
.

Proposition 13.4. Homogeneous bases {uλ},{vλ} of Λ satisfy

⟨uλ, vµ⟩ = δλµ⇔∑
λ

uλ(x)vλ(y) =∏
i,j

1

1 − xiyj
.
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14. Friday, October 5, 2012

[Missed class on Monday and Wednesday for Sukkot]
We have the following bases of Λ:

mλ, pλ, eλ, hλ, sλ.

We know:
hµ = ∑

λ≥µ
Kλµsλ, Kλµ = ∣SSY T (λ,µ)∣.

eµ = ∑
λ≥µ

sλ∗

eµ∗ = ∑
λ∗≤µ∗

Kλ∗µ∗sλ.

Corollary 14.1.
F ∶ R → Λ, F (xλ) = sλ.

Corollary 14.2.
⟨sλ, sµ⟩ = δλµ.

Corollary 14.3.
χλ(wµ) = ⟨sλ, pµ⟩.

Corollary 14.4.
pµ = ∑

∣λ∣=n
χλ(wµ)sλ.

IndSnSλ1 = χλ + ∑
µ<λ

(?)χµ.

IndSnSλ∗
ε = χλ + ∑

µ>λ
(?)χµ.

This implies that the transition matrix is both upper and lower triangular, which means that it
must be unique.

All but {pλ} are Z-bases of ΛZ.

Corollary 14.5.
χλ(wµ) ∈ Z.

This is actually an unusual property for finite groups.

Corollary 14.6.
dim(Vµ)Sλ = ⟨χλ, IndSnSm1⟩ =Kλµ.

Corollary 14.7.

∑
λ

sλ(x)sλ(y) =∏
i,j

1

1 − xiyj
.

Corollary 14.8.
ω(sλ) = sλ∗ .

Corollary 14.9.
Kλµ = ⟨sλ, hµ⟩.

⇒ sλ =∑
µ

Kλµmµ = ∑
T ∈SSY T (λ)

xT .

where xT =∏a∈λ xT (a).
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In particular, dimVλ =Kλ,(1n) = ∣SY T (λ)∣.
Example 14.10. Consider V . We list all of the Standard Young Tableaux:

4 5
1 2 3

, 2 4
1 3 5

, 2 5
1 3 4

, 3 5
1 2 4

, 3 4
1 2 5

,

So dimV = 5.

14.1. New Basis (?) Recall: Vλ sits inside IndSnSλ∗
ε = C ⋅ {column antisymmetric tabloids}.

C(T0) = column tabloid given by T0.
R(T0) = row tab loud given by T0.
Note that sλ is the stabilizer of R(T0).
Vλ ⊆ C ⋅ {column antisymmetric tabloids}, has an element v0 = ∑w∈sλ w ⋅C(T0).

Example 14.11. λ = (2,2).

v0 =
3 4
1 2

+ 3 4
2 1

+ 4 3
1 2

+ 4 3
2 1

≠ 0.

Proposition 14.12. v0 ≠ 0.

Proof. Column tabloids wC(T0) are distinct (allowing for the signs), hence linearly independent.
�

Let S = w(T0), map ∶ λ→ {1, . . . , n}, i.e. S is a filling with no constraints. Then,

w(v0) = “C(wT0)” = ∑
R(S′)=R(S)

C(S′)

IndSnSλ1

""

// IndSnSλ∗
ε

Vλ

<<

Indeed,

∑
R(S′)=R(S)

C(S′) = “VR(S)”.

These span Vλ.

Theorem 14.13. The elements VT = w(v0) where T = w(T0) for T ∈ SY T (λ) are linearly inde-
pendent, hence a basis of Vλ.

Lemma 14.14. There exists a total ordering on {S ∶ λ→ {1, . . . , n}}, such that in each row orbit,
the one with increasing rows is least, and in each column orbit the one with increasing columns is
greatest.

In other words, we read the tableaux from northwest to southeast.

Example 14.15.
4 1
2 3 5

→ 42135.

4 3
2 1 5

→ 42315.

Consider a term ±CS in VT always has S ⊇ T . Order SY T (λ) using ≺. The matrix giving
coefficient of CS in VT for S,T ∈ SY T is upper triangular.
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15. Wednesday, October 10

[Class on Monday missed for Shemini Atzeret.]

15.1. Affine Algebraic Varieties over C. Let X ⊆ Cn be the zero locus of some polynomials
f ∈ C[x1, . . . , xn].

We define the ideal I(X) = {f(x) ∈ C[x] ∶ f ∣X = 0}.
Define C[x]/I(X) = O(X) as the ring of regular functions on X = the subring of XC generated

by the xi’s.

Example 15.1. GLn is the vanishing locus of detM∗t−1, where t is a dummy variable. Specifically,
O(GLn) = C[x11, . . . , xnn, t]/(t ⋅ det(x) − 1).

Example 15.2. SLn does not need the dummy variable. O(SLn) = C[x11, . . . , xnn]/(det(x) − 1).

Let f ∶X → Y be a morphism if f# ∶ Y C →XC, sending α ↦ α ○ f sends O(Y ) into O(X).
This means that if these varieties are embedded into affine space, the map of spaces is a polyno-

mial map.

Theorem 15.3.

(Morphisms X → Y )←→ (C-algebra homomorphisms O(Y )→ O(X)).
We have a commutative diagram:

O(Y ) // O(X)

C[y1, . . . , ym]

OO

// C[x1, . . . , xm]

OO

An algebraic group G is a group and a variety such that µ ∶ G × G → G and (⋅)−1 ∶ G → G,
(1 ∶ pt→ G) are morphisms.

Remark 15.4. Any projective algebraic group is abelian. Any arbitrary algebraic group must
factor through the affine algebraic group. Therefore, from the perspective of representation theory,
affine algebraic groups are the only ones of interest.

An algebraic (rational/regular) representation is a morphism of algebraic groups G → GLn or
G→ GL(V ), where V ≅ Cn

Remark 15.5. A morphism of algebraic groups is a morphism of varieties and a group homomor-
phism (one does not imply the other).

Remark 15.6. Let ρ ∶ G → GL(V ) be an algebraic representation, with W ⊆ V a G-invariant
subspace. Pick a basis of V starting with a basis of W . Then,

ρ(g) = ( α(g) γ(g)
0 β(g) ) ,

where α ∶ G→ GL(W ), β ∶ G→ GL(V /W ). This shows that W,V /W are algebraic.

Remark 15.7. Let V,W be algebraic representations of G. α ∶ G → GL(V ), β ∶ G → GL(W ).
Then V ⊕W has the representation

ρ(g) = ( α(g) 0
0 β(g) ) .

Therefore, V ⊕W is algebraic.
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Remark 15.8. Note that for V ⊗W , we can take

ρ(g)(i,i′),(j,j′) = αij(g)βi′j′(g).
Therefore, V ⊗W is algebraic.

All the familiar constructions associated to representations, e.g. V ∗,Hom(V,W ), SnV,∧nV ⊂
V ⊗n, are algebraic.

We observed that the group multiplication µ ∶ G×G→ G corresponds to a morphism of varieties

O(G)→ O(G ×G) = O(G)⊗O(G).
(Note that O(X × Y ) = O(X)⊗C O(Y ).)

Every part of the group structure induces a “co-” structure on O(G).
µ ∶ G ×G→ G ↔ ∆ ∶ O(G)→ O(G)⊗O(G).

(⋅)−1 ∶ G → G ↔ S ∶ O(G)→ O(G).
1 ∶ pt→ G ↔ ev1 ∶ O(G)→ C.

These maps make O(G) a Hopf algebra.
[For G finite, O(G) = GC = (kG)∗.]

16. Friday, October 12, 2012

Consider the additive and multiplicative groups Ga and Gm. We want a representation that is
also a homomorphism of algebraic groups.

G→ GL(V ). G × V → V.

This induces a ring homomorphism:

S(V ∗) = O(V )→ O(V )⊗O(G) = S(V ∗)⊗O(G).
S(V ∗) is the symmetric algebra generated by V ∗. Restricting to V ∗ we claim that the image will
be contained in V ∗ ⊗O(G) as below:

V ∗ → V ∗ ⊗O(G).
We have the following diagrams that O(G) satisfies:

G×G×G
(g, h, v)

1G×ρ
//

µG×1V
��

G×V
(g, hv)

ρ
��

G×V
(gh, v) ρ

//
V
ghv

V

��

1V

##

G × V ρ
// V

V ∗ σ //

σ

��

V ∗ ⊗O(G)

1V ∗⊗∆op

��

V ∗ ⊗O(G)
σ⊗1O(G)
// V ∗ ⊗O(G)⊗O(G)

where O(G) ∆→ O(G)⊗O(G).
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V ∗

σ
��

1V

((
V ∗ ⊗O(G)

1V ∗⊗eV1
// V

Definition 16.1. Right coaction of coalgebra O(G), ∆ ∶ O(G) → O(G) ⊗C O(G) with counit
O(G)→ ε on V , means

σ ∶ V → V ⊗O(G)
such that the diagrams commute. If V is a left comodule, then V ∗ is a right comodule. Starting
with the map:

G × V → V ↝ V ∗ ×G→ V ∗ ↝ V → V ⊗O(G)→ V.

O(G)∗ is an algebra. We have a comultiplication:

∆ ∶ O(G)→ O(G)⊗O(G).

which induces:

∆∗ ∶ O(G)∗ ← O(G)∗ ⊗O(G)∗

with unit ev1 ∶ O(G)→ C.
The map

g ↦ evg ∶ O(G)→ C
is a homomorphism from G→ (O(G)∗)∗.

If G is finite, then O(G)∗ = kG. For infinite groups G, this space is huge. In some sense, O(G)∗
is the double dual of CG, but it is not the whole double dual.

Example 16.2. Let Gm = (C×, ⋅) = GL1(C).

O(Gm) = C[t, t−1].

Gm ×Gm → Gm, s, t↦ st.

C[t, t−1]→ C[s, t, s−1, t−1] = C[t, t−1]⊗C[t, t−1] = C[s, s−1]⊗C[t, t−1], t↦ st = t⊗ t.

The comultiplication is ∆(t) = t⊗ t,∆(t−1) = t−1 ⊗ t−1.
If Gm acts on V , then we have a right comodule structure:

σ ∶ V → V ⊗C[t, t−1].

a ∈ Gm = C×, a ⋅ v = ⟨σ(v), eva⟩ = ⟨∑ vi ⊗ fi(t), eva⟩ =∑ vifi(a).
⟨am, f⟩ = the coefficient of tm in f(t). Specifically, am ∈ O(Gm)∗ and am ↦ Em ∈ End V .
⟨am ⋅ an, f⟩ = the coeficient of smtn in f(st).
If f = ∑aktk, then f(st) = ∑aksktk. So, am ⋅ an = 0 if m ≠ n, and an ⋅ an = an for all n ∈ Z.
This implies that V =⊕n∈Z Vn, where an = projection on Vn. Explicitly:

evt = ∑
n∈Z

ant
n.

For any finite f , this is a finite sum. The G-action on each Vn is t↦ tn.
In this way, Gm is like a finite group; i.e. Maschke’s Theorem holds – the algebraic representations

are completely reducible.
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17. Monday, October 15, 2012

17.1. Review of Gm. Recall that Gm = (C×, ⋅),O(G) = C[t, t−1].
A representation ρ ∶ V → V ⊗O(G) acts as

gv = ρ(v)(g) = ⟨ρ(v), εg⟩.
where εg = evg ∈ O(G)∗. Then, we can write:

ρ(v) =∑ vi ⊗ fi, gv =∑ fi(g)vi.
O(G)∗ is an algebra containing G in its group of units as g ↦ εg.
In the case of Gm we distinguished special elements of O(G)∗. Let ⟨en, f(t)⟩ = coefficient of tn

in f(t). en ∈ O(Gm)∗, for all n ∈ Z.

eken = δknen.
V =⊕

n∈Z
Vn.

en = projection onto Vn.

Gm acts on Vn by t(v) = tnv, i.e. it has one irrep, which is one-dimensional with matrix (tn) for
each n ∈ Z. Every comodule is a direct sum of these.

17.2. Additive group Ga. The group Ga = (C,+). The ring of functions is O(Ga) = C[x]. Define
am ∈ O(Ga)∗ for each m ∈ N, by ⟨am, f(x)⟩ = the coefficient of xm in f(x).

The multiplication is

Ga ×Ga → Ga, (x, y)↦ x + y.
The comultiplication is

∆ ∶ O(G)→ O(G)⊗O(G), x↦ x⊗ 1 + 1⊗ x.
(In other words, x is a primitive element of the Hopf algebra.)

It acts on powers of x by

∆(xm) = (x⊗ 1 + 1⊗ x)m =∑(m
k
)xk ⊗ xm−k.

(This means that xm is a grouplike element.)
We define the product ⋅ by:

⟨ak ⋅ al, f⟩ ∶= ⟨ak ⊗ al,∆f⟩
the coefficient of xkyl in f(x + y).

akal = (k + l
k

)ak+l.

This implies that

ak =
ak1
k!
.

The whole action of Ga on V is determined by the operator a1 ∶ V → V .
If v1, . . . , vn are a basis of V , then

ρ(vi) =∑
j

vj ⊗ fij(x).

So, there is an n such that an kills v. Therefore, a1 is a nilpotent operator.
(If V is a comodule but dimV =∞, a1 is locally nilpotent, i.e. for all v ∈ V , there is an n such

that an1v = 0.)
We can describe

x ⋅ v = ⟨ρ(v), evx⟩.
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In other words, “evx = ∑
m≥0

amx
m”. This appears to be an infinite sum, but by nilpotency,

depending on x, this will be a polynomial. So,

evx = ∑
m≥0

am1
m!

xm = ea1x.

This means that we can describe Ga-modules as finite dimensional vector spaces V with nilpotent
endomorphism a ∈ End (V ).

There exist subspaces 0 ⊂ V1 ⊂ ⋯ ⊂ Vd = V such that aVk ⊆ Vk−1 i.e. a acts as 0 on Vk/Vk−1. Ga
acts trivially on each factor.

So for contrast: Gm: there is an irrep. Vm for each m ∈ Z. All comodules are completely
reducible. (This is a reductive group.)
Ga: There is a unique irrep – the trivial representation. All nontrivial reps are not completely

reducible. Example:

x↦ ( 1 x
0 1

) .

which is unipotent (i.e. if you subtract I, the result is nilpotent).

Theorem 17.1. Every affine algebraic group G over C has a unique maximal unipotent normal
subgroup U , and G/U is reductive.

Example 17.2. Let G = B = {upper-triangular matrices A ∈ GL2}.

( t a
0 u

) t, u ≠ 0. ⇒ O(G) = C[t±1, u±1, a].

The normal subgroup is

U = {( 1 a
0 1

)} ≅ Ga.

The following exact sequence of groups

0→ U ↪ B → G2
m → 0

implies that B/U = G2
m, which is reductive.

18. Wednesday, October 17, 2012

18.1. Classical Reductive Groups /C. This will be a less formal review.

(1) GLn.
(2) SLn. (group of matrices of determinant 1)
(3) SOn = {X ∈ SLn ∶XXT = I} ⊂ On (group of matrices that preserve some bilinear form.) We

take only the det 1 piece, so that it will be connected; On has two connected components.
(4) Sp2n = {X ∈ GL2n ∶ X preserves ⟨, ⟩ ∶ ⟨Xv,Xw⟩ = ⟨v,w⟩ ∀v,w ∈ V }, the symplectic group.

On C2n, there are non-degenerate antisymmetric bilinear forms (i.e. ⟨v,w⟩ = ⟨w, v⟩).
(5) Exceptional ones: G2, F4,E6,7,8.
(6) Relatives:

(a) µn = {e2πik/n ⋅ I} is a normal subgroup of SLn ⊆ GLn. Modding out by that subgroup
gives PSLn = PGLn = SLn/µn.

(b) SO2n/{±1}.
(c) Sp2n/{±1}.
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Remark 18.1. The surjection SLn ↠ PSLn induces a surjection of the duals to the rings of
regular functions:

O(PSLn)∗ O(PSLn)∗oo

PSLn

OO

SLnoo

OO

Remark 18.2. Actually, the orthogonal groups are quotients of larger groups called the Spin
groups Spinn.

0→ {±1}→ Spinn↠ SOn → 0.

● Spin3 is isomorphic to SL2(C), which is a double cover of SO3.
● Spin4 ≅ SL2 × SL2.
● Spin5 ≅ Sp4.

Eventually, we will hope to classify all of the reductive groups based on combinatorial data.

Definition 18.3. Let X ⊆ Cn be an algebraic variety, with p ∈ X. The tangent space TpX. Let
f ∈ C[z1, . . . , zn] be a function in IX , i.e. such that f(p) = 0.

We say that p + tu is a tangent line to X if f(p + tu) ∈ t2C[t] for all f ∈ IX , or u is a tangent
vector.

TpX = {tangent vectors to X at p}.

In particular,
d

dt
∣t=0f(p + tu) = ∂uf ∣p

depends only on f ∣X for u ∈ TpX.
Given coordinates u = (c1, . . . , cn), we set ∂uzi = ci. This gives an injection:

TpX ↪ O(X)∗
u Ð→ δ ∶ δ(f) = ∂uf ∣p

δ(fg) = δ(f)g(p) + f(p)δ(g).
δ(1) = 0.

WLOG, we may assume that p is the origin in Cn. Then f ∈ IX is ∑aizi+ higher terms.

∂uf =∑aici if u = (c1, . . . , cn).
(∂u is defined as ∑ ci∂zi .) u will be a tangent vector if each of these are 0.

Let mp = ideal of p in O(X) = kerO(X) → C, the evaluation map. Then, as elements of mp/m2
p,

coordinates zi satisfy ∑aizi = 0.
The values of δ on the zi determine δ.
Given λ ∶ mp/m2

p → C, we obtain δ ∶ O(X) → C, for which δ∣m2
p
= 0 and δ(1) = 0, simply by

observing

O(X)/m2
p = C⊕mp/m2

p

and having λ act on the right summand, and the zero map on the left summand.

f = f(p) + f̃ f̃ ∈ mp.

g = g(p) + g̃ g̃ ∈ mp.

Then,
fg = f(p)g(p) + f(p)g̃ + f̃g(p) + f̃ g̃.
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(the last term is an element of m2
p)

⇒ δ(fg) = f(p)δ(g) + δ(f)g(p).

TpX ≅ {point derivations OX → C at p} ≅ (mp/m2
p).

We can define D = C[t]/(t2) the set of “dual numbers” = O(T ).
There is a unique homomorphism ε ∶D → C sending t↦ 0.
The space above is also isomorphic to

{ϕ ∈ HomAlg(O(X),D) ∶ ε ○ ϕ = evp}.

19. Friday, October 19, 2012

We saw several definitions of the tangent space TpX. We want to define the notion of a vector
field for an algebraic variety. We want a tangent vector at each point, defined in a polynomial way.

Example 19.1. On Cn:

TpCn = C ⋅ {∂z1∣p, . . . , ∂zn∣p}.
∂zi is a vector field. An algebraic vector field on Cn will be polynomial linear combination of these:

∑ fi(z)∂zi.

The other way to think about this is as an operator on the ring of functions:

O(Cn) = C[z1, . . . , zn].

∂ ∶ O(Cn)→ O(Cn)
is a derivation: ∂(fg) = ∂f ⋅g+f ⋅∂g. Conversely, this also gives a way to construct algebraic vector
fields from derivations. So we have a correspondence:

Algebraic Vector fields on Cn ←→ Derivations O(Cn)→ O(Cn)

Definition 19.2. ∂ is tangential to X if ∂IX ⊂ IX . Then, we get ∂∣X ∶ O(X) → O(X). Still a
derivation, hence a vector field.

This defines algebraic vector fields on X by the correspondence above.

More explicitly, take δ = {δp ∈ TpX for each p ∈X}, a vector field, and f ∈ O(X).
Define the function g(p) = δpf ∈XC.
If δf ∈ O(X)∀, f ∈ O(X), call it an algebraic vector field. Therefore, it gives us a derivation

O(X)→ O(X).
In the reverse direction, a derivation δ ↦ δpf = (δf)(p), an algebraic vector field.

Remark 19.3. O(X)∗ is not a coalgebra. For example, given λ ∈ O(X)∗,

O(X)⊗O(X) m→ O(X) λ→ C.

λ ○m ∈ (O(X)⊗O(X))∗ ⊋ O(X)∗ ⊗O(X)∗.
λ is a point derivation at p ⇔ λ ○m = λ ⊗ 1 + 1 ⊗ λ, where 1 = evp. However, this is just a

rephrasing of the Leibniz rule:

λ(fg) = λ(f)g(p) + f(p)λ(g).
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Let G be an algebraic group, which has a natural left and right action on itself (by left and
right multiplication). Then it inherits a left and right action on the ring of functions, via:

G

((

**
G G

vv

uu

G
''

O(G) G
ww

The crossed arrows is due to contravariance. Specifically, for g ∈ G,f ∈ O(G),

g ⋅
R
f = f(− ⋅ g).

gh ⋅
R
f = f(− ⋅ gh).

h ⋅
R
f = f(− ⋅ h).

g ⋅
R
(h ⋅

R
f) = f(− ⋅ g ⋅ h).

g ⋅
L
f = f(g−1 ⋅ −).

Proposition 19.4. Both G actions on O(G) have coactions.

Taking ρ ∶ V → V ⊗O(G).
g ⋅ v = ⟨ρ(v), g⟩

is an action.

ρ(v) =∑ vi ⊗ fi, g ⋅ v =∑ fi(g)vi.

∆ ∶ O(G)→ O(G)⊗O(G) = O(G ×G)

makes O(G) a right O(G) comodule, which gives an action G↷
R
O(G).

The action is (h, g) ↦ f(h, g). Take a fixed g, apply it to a function f , and get the function
f(− ⋅ g).

Now, O(G)∗ acts onO(G) and commutes with G↷
L
O(G).

For T ∈ O(G)∗, T ∶ O(G)→ C.

T ↦ O(G)→ O(G)⊗O(G),

then have T act on the right factor, resulting in O(G) ⊗ C ≅ O(G). So this is an element of
End G(O(G)).

Under this map, evg ↦ g ⋅
R
−. Generally, O(G)∗ maps to left invariant operators on O(G).

Given S,T ∈ O(G)∗,

ST ∶ O(G)→
∆
O(G)⊗O(G) →

S⊗T
C.

ST ↷ O(G) ∶ O(G)→
∆
O(G)⊗O(G) →

1⊗∆
O(G)⊗O(G)⊗O(G) Ð→

1⊗S⊗T
O(G).

(This commutes with the same diagram replacing 1⊗∆ by ∆⊗ 1.)
All of this is another way of saying that the group multiplication is associative; this is its

consequence for the coordinate rings.
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20. Monday, October 22, 2012

Recall that the action G↶ G gives an action G↷ O(G), via g ⋅
R
f = f(− ⋅ g).

This makes O(G) an O(G)-comodule, coaction is ∆, gives a map O(G)∗ → End C(O(G)) ex-
tending the G action.

This identifies O(G)∗ with left invariant operators. The inverse is T ↦ ev1 ○ T .
Let δ ∈ O(G)∗ be a point derivation at 1, i.e. δ ∈ T1G. Then, δ ↷ O(G) acts by δ ⋅ f = δhf(gh),

where δh means that δ evaluates f(gh) as a function of h (Note that while δ(f) is in the field δ ⋅ f
is a function).

δ ⋅ (ef) = δhef(gh) = δhe(gh)f(g) + e(g)δhf(gh) = (δ ⋅ e)f + e(δ ⋅ f).

Therefore, δ ⋅ f is a derivation.

Lemma 20.1. The commutator of two derivations is a derivation.

Proof. Let X,Y ∈DerO.

XY (fg) =X(Y (f)g + fY (g)) =XY (f) + Y (f)X(g) +X(f)Y (g) + fXY (g).

Y X(fg) = Y X(f)g + Y (f)X(g) +X(f)Y (g) + fY X(g).

⇒ [X,Y ] = (XY − Y X)(fg) = [X,Y ](f)g + f[X,Y ](g).

So, the commutator is also a derivation. �

Corollary 20.2. For any δ, ε ∈ T1G ⊆ O(G)∗ ⇒ [δ, ε] ∈ T1G.

Definition 20.3. Define Lie(G) ∶= T1G ⊂ O(G)∗, which is closed under [ , ]. A lie algebra satisfies:

(1) [X,Y ] = −[Y,X].
(2) [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 (left as an exercise).

20.1. Lie Algebra.

ϕ ∶ G→H ↝ ϕ# ∶ O(H)→ O(G)↝ ϕ̃ ∶ O(G)∗ → O(H)∗ ↝ dϕ ∶ T1G→ Tϕ(1)H = T1H.

The final map when considered as dϕ ∶ Lie G→ Lie H is a Lie algebra homomorphism.
(The functor sending G→ Lie G is faithful on C and for other fields of char 0, but not in char p,

consider the Frobenius map for example.)

Question 20.4. What is Lie (GL(V )) = gl(V )?

Let V = Cn. End V is a vector space, Cn2
.

TpEnd V ≅ End V.

GL(V )↪ End (V )

is an open subset, i.e. complement of the vanishing set of the determinant.

T1(GL(V )) ∼→ T1End (V ) ≅ End (V ).

Given a matrix A ∈ End V =Mn, we have a derivation

δA ∶ O(GL(V ))→ C, δA(f) =
d

dt
t=0 f(I + tA).
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Remark 20.5. δA is the linear term of etδA ∈ O(G)∗[[t]]. Given the product m ∶ O(G)⊗O(G)→
O(G), the following map is a primitive element:

δA ○m = δA ⊗ 1 + 1⊗ δA,

where 1 = ev1 is the unit in O(G)∗. (The above is a rephrasing of the Leibniz rule). Then,

δnA ○m =
n

∑
k=0

(n
k
)δkA ⊗ δn−kA .

This gives us

etδA ○m = etδA ⊗ etδA ,
i.e. etδA ∶ O(G)→ C[[t]] is an algebra homomorphism.

There is another homomorphism O(GL(V ))→ C[[t]], sending

f ↦ f(eAt)

where eAt is a formal power series of matrices, or equivalently, a matrix of formal power series –
eAt ∈Mn(C[[t]]); additionally, eAt ∈ GLn(C[[t]]).

Proposition 20.6. The two homomorphisms O(GL(V ))→ C[[t]] are the same. Explicitly,

etδA(f) = f(eAt) ∈ C[[t]].

Proof. It is sufficient to check for f = xij . The matrix with (i, j) entry δA(xij) is (based on the
formula from before)

d

dt
t=0 (I + tA) = A

δkAxij = δ⊗kA (x(1)⋯x(k))ij =
d

dt1
⋯ d

dtk
t=0 (I + t1A)⋯(I + tkA) = Ak.

So the matrix with entries etδA(xij) is etA = the matrix with entries xij(etA). �

Then we send δA →DA ∈ End C(O(G)), via etδA ↦ etDA , which acts by etDAf = f(− ⋅ etA).

21. Wednesday, October 24, 2012

Recall: We want to define Lie GLn. GLn has an obvious map to Mn, so T1GLn = T1Mn =Mn.
Given A ∈Mn, we have a derivation:

δAf = d

dt
∣t=0f(I + tA).

Then given that δA ∈ O(G)∗,

etδA ∈ O(G)∗[[t]] or etδA ∶ O(G)→ C[[t]].

Alternatively, we can send f ∈ O(GLn) → f(etA) which gives a map O(GLn) → C[[t]]. Recall
that both homomorphisms were the same.

etXetY = et(X+Y +⋯).

X and Y can be linear operators, or they can be elements of any algebra.

Proposition 21.1.

e−tXet(X+Y )e−tY ≡ 1 − t
2

2
[X,Y ]) mod (t3).
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Proof. The following statement is equivalent:

e−t(X+Y ) ?≡ etX(1 − t
2

2
[X,Y ])etY mod (t3).

RHS = (1 + tX + t
2

2
X2)(1 − t

2

2
[X,Y ])(1 + tY + t

2

2
Y 2)

= 1 + t(X + Y ) + t
2

2
(X2 + Y 2 − [X,Y ] + 2XY )

This last summand is X2 + Y 2 + Y X +XY = (X + Y )2 ⇒ the desired equation is true. �

Corollary 21.2.

[δA, δB] = δ[A,B].

Definition 21.3.

Lie GL(V ) =
def

gl(V ) = (End V, [ , ]).

Our convention in these examples is that X is an element of GLn as a group, while A is an
element of gln as a Lie group.

Example 21.4. Consider the injection SL(V )↪ GL(V ). This is isomorphic to SLn ↪ GLn. The
condition that detX = 1 means that det(I +A) = 1, where

det(I +A) = 1 + tr A + quadratic terms.

So we need tr A = 0. So,

Lie (SLn) = sln ⊂ gln = {A ∶ tr A = 0}.

Example 21.5. Consider the injection SOn ↪ GLn, the special orthogonal group. These are the
matrices

{X ∶XXT = I}.
An element of the group X = etA satisfying

etAetA
T

= e0 ⇒ e(A+A
T ) = I ⇒ A +AT = 0.

Therefore,

Lie (SOn) = son = {A ∶ A +AT = 0}.
Note that this relation is preserved by Lie bracket. Suppose A = −AT ,B = −BT .

[A,B]T = (AB −BA)T = BTAT −ATBT = −[AT ,BT ] = −[A,B].

Incidentally, the fact that applying the exponential to son keeps us in SOn confirms that the relation
we chose was sufficient to define the variety.

Example 21.6. Now let us look at the symplectic group Sp2n. Let

{e1, . . . , en}, {e2n, . . . , en+1} = {f1, . . . , fn}.

be a dual basis, i.e.

⟨ei, fi⟩ = 1, ⟨fi, ei⟩ = −1.

We need to hold on to the labeling up to 2n, because we want to define an order to write matrices.
Given these relations, the inner product is described by the matrix:
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J = ⟨ei, ej⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

0 . .
.

1
− 1

. .
.

0
− 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The symplectic group is then

Sp2n = {X ∶ ⟨Xv,Xw⟩ = ⟨v,w⟩}
Take X = I + tA.

⟨v + tAv,w + tAw⟩ − ⟨v,w⟩ = 0.

⇒ t(⟨Av,w⟩ + ⟨v,Aw⟩).
⇒ Lie Sp2n = {A ∶ ⟨Av,w⟩ = −⟨v,Aw⟩∀v,w}.

Since the bilinear form is given by ⟨v,w⟩ = vTJw, this condition is:

vTATJw = −vTJAW.
Observe that −J−1ATJ = A⇒ ATJ = −JA.

Define AR to be the “Rong” transpose over the anitdiagonal. Then the set of matrices satisfying
the desired property are those of the form:

( A B = BR

C = CR −AR )

22. Friday, October 26, 2012

22.1. Representations of SL2(C). Recall from last time that

sl2 = {[ a b
c −a ]}

So, we can take a basis for the group:

E = [ 0 1
0 0

] , F = [ 0 0
1 0

] , G = [ 1 0
0 −1

]

These have commutators:

[E,F ] =H, [H,E] = 2E, [H,F ] = −2F.

SL2 has defining representation C2. So acting on the basis e1, e2

The Lie algebra acts as in Figure 2
SL2 acts on Sn ⋅C2, polynomials of degree n in 2 variables in x, y by changing the variables via

a linear transformation

[ a b
c d

]

with determinant 1.
In this case,

E ∶ y ↦ x,x↦ 0

F ∶ x↦ y, y ↦ 0

H ∶ x↦ x, y ↦ −y.
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EF

1

−1

Figure 2. Action of the Lie Group on the Vector Space

Viewing these as derivations:

E = x∂y, F = y∂x, H = x∂x − y∂y.
So, given a polynomial f(x, y) ∈ SC2 ↦ g(x, y, a, b, c, d) ∈ SC2 ⊗O(SL2).

Example 22.1. Consider the second symmetric power S2C2. The action of the Lie group on these
monomials is pictured in Figure ??.

x2

xy

y2

E F H

2

21

1

2

−2

0

Figure 3. Action of the Lie Group on S2C2

The diagrams for the general symmetric power SnC2 is similar.

Proposition 22.2. SnC2 is irreducible.

Proof. xn generates it (see F ). xn is in every nonzero submodule (E). �

These are all the finite-dimensional irreducible representations.

Remark 22.3. Why is this so? We have an action sl2 ↷ V , i.e. we have a map sl2 → gl(V ).
Observe that [H,E] = 2E. Suppose that Hv = λv.

⇒HEv = [H,E]v +EHv = (2 + λ)Ev.
So for any eigenvalue λ of H, either (2+λ) is an eignevalue or the eigenvector is killed by E. If we
are finite dimensional, this implies that you will eventually find the eigenvector of H killed by E.

Claim: Applying powers of F to that original vector gives you all vectors in the basis, i.e. all
the irreps

Start with that eigenvector v. Apply F until you arrive at a vector killed by F , i.e. Fnv ≠ 0 such
that Fn+1v = 0. The eigenvalues corresponding to H for each vector are {λ,λ − 2, . . . , λ − 2n}.
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EFv0 = ([E,F ] + FE)v0 =Hv0 = λv0.

EF 2v0 = [E,F ]Fv0 + FEFv0HFv0 + λFv0 = (2λ − 2).

These calculations continue until our general formula.

EF k+1v0 = (Ck)F kv0.

LHS = ([E,F ] + FE)F kv0 = (λ − 2k +Ck−1)F kv0...

We find that Ck = kλ − 2(k+1
2
). This forces n to be a multiple of 2? I need to clarify this last part.

The fact that we get the full span of values by applying E and F means we have a submodule,
but this is irreducible.

23. Monday, October 29, 2012

Let g = ( a b
c d

) ∈ SL2 such that the determinant is 1. This acts on polynomials in two variables

by

g ⋅ f(x, y) = f(ax + cy, bx + dy),

giving an action of SL2 ↷ C[x, y]n.
In particular, SL2 ↷ C[x, y]1 = V is the defining representation matrix of g in basis (x, y) is

( a b
c d

).

The coaction

C[x, y] // C[x, y]⊗O(SL2) = C[x, y, a, b, c, d]/(ad − bc − 1)

f(x, y) � // f(ax + cy, bx + dy)
leads to a Lie algebra action defined by derivations on C[x, y]. Specifically,

E = x∂y, F = y∂x, H = x∂x − y∂y.

E = [ 0 1
0 0

] , F = [ 0 0
1 0

] , H = [ 1 0
0 −1

]

On the symmetric algebra SnV , one can list the monomials xny0, . . . , x0yn and the actions send
each monomial up or down, with H having each monomial as an eigenvector.

23.1. Complete Reducibility of O(SL2)-Comodules. First we need to explore the general
properties of coalgebras with completely reducible comodules.

Let O be a coalgebra, with V → V ⊗O. This All comodules are ‘locally finite dimensional’, i.e.
every v ∈ V is contained in a finite dimensional subcomodule.

vj
� ρ

//

n

∑
i=1

vi ⊗ fi
ρ⊗id

..

id⊗∆
00∑
i,k

vik ⊗ fi ⊗ fk fi ∈ O.

These maps must be the same to respect the coalgebra structure, so we have an expression in
terms of finitely many basis vectors. This means that all irreducible comodules are finite dimen-
sional.

Let V be a finite-dimensional O-comodule. The action is:
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ρ ∶ V // V ⊗O
OO

��

(End V )∗ = V ⊗ V ∗ → O

��

O∗ → End V

This gives a surjection from O∗↠ A↪ End V For C = k = k̄, V irreducible implies that A is the
endomorphism ring of V . Why? Because if the field is contained in a finite dimensional division
ring, then taking one element generates an algebraic extension which must already be contained in
the algebraically closed field.

This means that the surjection O∗ ↠ End V is a consequence of the injection (End V )∗ ↪ O,
which is a two-sided subcomodule. It is two-sided in that when you apply the diagonal map
O → O ⊗O you can define the action on the left or right factor.

In general, you cannot turn a left comodule into a right comodule or vice versa; groups are special
in this regard because the inverse is an antipode. But because (End V )∗ ≅ V ⊗ V ∗, we pick up the
left module structure of one and the right module structure of the other to obtain a bimodule.

Moreover, (End V )∗ is a finite direct sum of copies of V as a right comodule. If (Vi)i∈I are
non-isomorphic irreducibles. Then (End Vi)∗ ⊆ O are linearly independent.

Reason: Given (End V1)∗ + ⋯ + (End Vn)∗ = ⊕ ⊆ O it is a direct sum of Vi’s for i = 1, . . . , n.
Then End Vn+1)∗ has zero intersection with it.

We get a canonical map:

⊕
i∈I

(End Vi)∗ ↪ O.

Example 23.1.
O(Gm) = C[t, t−1].

Each Vm is (tm). Applying the coproduct, ∆1 = 1⊗ 1, ∆t = t⊗ t and ∆tm = tm ⊗ tm.
Then (End Vm)∗ = C ⋅ tm ⊂ C[t, t−1] is a subcomodule.

O(Gm) =⊕(End Vi)∗.
On the other hand, we had only one semisimple module. We will see that the property of a

coalgebra being semisimple over itself is equivalent ot the category of comodules over the coalgebra
being semisimple.

24. Wednesday, October 31, 2012

Review:
We have a coalgebra, defined by the following maps:

∆ ∶ O → O ⊗O.
1 ∶ O → k.

Then O∗ is an algebra. The irreducible comodules are finite-dimensional. Specifically, for V
irreducible, O∗↠ End (V ), when k = k̄ algebraically closed.

This comes from the injection
End (V )∗ ↪ O.

End V = V ⊗ V ∗.

The images of these maps for each irreducible are irreducible, so we get ⊕i∈I(End Vi)∗ ⊂ O.
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Theorem 24.1. The following are equivalent:

(1) O =⊕i(End Vi)∗. [i.e. satisfies Peter-Weyl Theorem]
(2) O is completely reducible as a (right) O-comodule. (We always mean right comodules and

left modules unless otherwise specified.)
(3) Every O-comodule is completely reducible.

Proof. (1)⇒ (2), (3)⇒ (2) are trivial. Given (2), we want to prove (1) and (3).
Let O ≅⊕i∈I Fi⊗Vi, where Fi is some (possibly infinite-dimensional) vectorspace. (Including the

Fi allows us to have Vi /≅ Vj for i ≠ j, all irreducible.)
These vectorspaces have a natural isomorphism

Fi ≅ HomO−comod(Vi,O)
for k = k̄ algebraically closed.

O∗, (O∗)op act on O. a ∈ O∗ acts as

O ∆→ O ⊗O 1⊗a→ O.
a ∈ (O∗)op acts as

O ∆→ O ⊗O a⊗1→ O.
Claim: (O∗)op → End O∗(O) is an isomorphism with inverse

ϕ ∈ End O∗(O)↦ 1 ○ ϕ ∈ O∗.
�

25. Friday, November 2, 2012

Picking up from where we were cut off last time by the fire alarm:

Proof of Theorem 24.1. (2) ⇒ (1). Let O ≅ ⊕i∈I Fi ⊗ Vi, where Fi is some (possibly infinite-
dimensional) vectorspace. (Including the Fi allows us to have Vi /≅ Vj for i ≠ j, all irreducible.)

These vectorspaces have a natural isomorphism

Fi ≅ HomO−comod(Vi,O)
for k = k̄ algebraically closed.

O∗, (O∗)op act on O. a ∈ O∗ acts as

O ∆→ O ⊗O 1⊗a→ O.
a ∈ (O∗)op acts as

O ∆→ O ⊗O a⊗1→ O.
Claim: (O∗)op → End O∗(O) is an isomorphism with inverse

ϕ ∈ End O∗(O)↦ 1 ○ ϕ ∈ O∗.
Therefore,

(O∗)op ≅∏
i

End k(Fi).

We get ei ∈ O∗ acting as projections on the summands Fi ⊗ Vi.
● eiej = δijei.
● ei is in the center of O∗.
● “∑i ei = 1” in the sense that given any operator f, ⟨ei, f⟩ is 1 (projection of f onto Fi⊗Vi).

Since f is non-zero for only finite number of indices i.
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The map O∗ → End (Vi) is dual to End (Vi)∗ ↪ O. This endomorphism ring has

End (Vi)∗ ≅ V ∗
i ⊗ Vi ⊂ Fi ⊗ Vi.

This implies that ej acts as zero on Vi for all j ≠ i.
On the other hand, if we map ei into O, we note that it merely projects onto itself then comul-

tiplying we obtain the counit of the coalgebra (I think?). Therefore, ei acts as 1 on Vi.
This means that O∗ → End (Vi), where O∗ =∏iEnd (Fi)op and this map factors:

O∗ → (End Fi)op↠ End Vi.

The surjectivity comes from the “Density Theorem.”
Even if it were infinite, the endomorphism ring would be simple in the sense that it has no proper

two-sided ideal. However, because the kernel of the second map needs to be a two-sided ideal, this
means that the map is an isomorphism.

⇒ (End Fi)op ≅ End (Vi).
This implies that the dimension of Fi = dimV ∗

i , which further implies that End (Vi)∗ ⊂ O in fact
gives ⊕iEnd (Vi)∗ = O. Proving

(Note that even if we are not in k algebraically closed, this argument could be easily corrected
by paying attention to what division rings we land in)

(2)⇒ (3). Let M be an O-comodule. Then,

O∗ ↷⇒M =⊕Mi.

with ei ∈mcO∗ acting as the projection on Mi. ej , when j ≠ i, kills Mi. Hence,

O∗ //

%%

End (Fi)op // End (Mi)

End (Vi)
Then End (Mi) is a matrix algebra over End (Vi), a semisimple algebra, which means that it

too is semisimple. Therefore, Mi is a direct sum of copies of Vi. �

Example 25.1 (Peter-Weyl Theorem for SL2). SL2 is the group of matrices
a b
c d

, where ad−bc =

1. The ring of functions
O(SL2) = C[a, b, c, d]/(ad − bc − 1)

has a degree filtration C = F0 ⊂ F1 ⊂ ⋯, where Fd = image of C[a, b, c, d]deg≤d. FkFl ⊆ Fk+l.
This gives an associated graded ring

grFO(SL2) =⊕
d

Fd/Fd−1.

with the map
Fk/Fk−1 ⊗ Fl/Fl−1 → Fk+l/Fk+l−1.

We define a map
C[a, b, c, d]/(ad − bc)↠ grFO(SL2).

Lemma 25.2.
dimFm/Fm−1 ≤ (m + 1)2.

Proof. Spanned by monomials of degree m, but due to the relation ad = bc, we only need monomials
not divisible by ad.

We can separately consider am−r−sbrcs and brcsdm−r−s which overlap when there are no factors
of a or d. Together these fill up a square of side length m + 1. �
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26. Monday, November 5, 2012

We will pick up with demonstrating the Peter-Weyl Theorem for SL2.
For complete reducibility of the O-comodules, it is sufficient to show that O itself is completely

reducible as an O-comodule.
Recall the map

O(SL2)↞ C[a, b, c, d]/(ad − bc − 1)
We define the filtration as we did last time with Fm = image of C[a, b, c, d]deg≤m, and

grFO(SL2) =⊕
d

Fd/Fd−1.

The ring map

C[a, b, c, d]/(ad − bc)↠ grFO(SL2)
is a surjection. Note that we quotient by ad − bc since ad − bc is quotiented out as an element of
smaller degree, since it is equal to 1. This is a general strategy for non homogeneous ideals – make
a graded filtration, and obtain a homogeneous ideal as a result.

We also saw last time that

dimFm/Fm−1 ≤ (m + 1)2.

⊕
m

(End Vm)∗ ⊂ O(SL2)

Vm = SmC2

which has matrix coefficients polynomials of degree m in a, b, c, d.
This means that

⇒ ⊕
j≤m

(End Vj)∗ ⊆ Fm.

The dimension of this direct sum of representations is given by:

dim = ∑
j≤m

(j + 1)2.

This is because Vm as defined has dimension m + 1.
Since dimFm ≤ ∑j≤m(j + 1)2, this implies

⇒ ⊕
j≤m

(End Vj)∗ = Fm, and (End Vm)∗→̃Fm/Fm−1.

This in turn implies that the monomials not containing ad are a basis for the graded ring, which
in turn means that they are a basis for the non-graded version.

Remark 26.1. There is a grading in which the original ideal is in fact homogeneous, specifically
Z/2Z grading where the variables have odd grading. In this grading the generator of the ideal is
contained in the even graded piece.

O(SL2)even = C[a2, ab, ac, . . .]/(ad − bc − 1, a2b2 − (ab)(ab), . . .).
[The coproduct of elements in this algebra sends an entry to what it would be in the product of

two matrices, e.g. ∆a = a⊗ a + b⊗ c.]
Actually this subring corresponds to the coordinate ring of another algebraic group, specifically:

O(SL2)even = O(SL2){±I} = O(SL2/{±I}) = O(PSL2).
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26.1. Classical Reductive Groups. We have examined GLn, SLn, PGLn, SOn, Sp2n, . . . There
are structure theorems about reductive groups that they look like these, or one of the exceptional
groups, e.g. E6,E7,E8, . . .

We want to calculate characters, cocharacters, roots, Weyl groups, etc.
First we look for the maximal torus in every classical group.
Let the algebraic torus T ⊂ GLn denote the set of matrices:

T =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

z1 0
⋱

0 zn

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= (C×)n.

For SOn, take (x, y) on Cn to be xT
⎛
⎜⎜
⎝

0 1

. .
.

1 0

⎞
⎟⎟
⎠
y, so (ei, en+i−j) = δij .

Then SOn = {X ∈ SLn ∶XTJX = J}. In other words,

XTJ = JX−1 ⇔ JXTJ =X−1

Multiplying the transpose on either side by J is the same as transposing over the antidiagonal,
which we described before as XR.

Therefore,

son = {A ∶ AR = −A}.

Let T be the set of diagonal matrices in here, we have

t =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

xn
⋱

x1

−x1

⋱
− xn

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

Sending this back to the group by exponentiation, we have:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

zn
⋱

z1

z−1
1

⋱
z−1
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

On the other hand, for Sp2n we multiply by a different matrix J :

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

. .
.

1
− 1

. .
.

− 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We get the same torus as we did in SO2n.
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26.2. Tori. Let T = (C×)n. One natural way to get coordinates is:

O(T ) = C[z±1
1 , . . . , z±1

n ].
We want a more coordinate-free approach, so we look at characters:
Characters: T is reductive, irreps are 1-dimensional,

T → C
z ↦ zm1

1 ⋯zmnn
where mi ∈ Z⇔m ∈ Zn. These are the endomorphism rings (End Vm)∗.

These form an abelian group X ≅ Zn under tensor product of representations. Then,

O(T ) = C ⋅X.
Then X is its character lattice. The coproduct in this coalgebra is ∆x = x⊗ x.

27. Wednesday, November 7, 2012

We have been examining the action of the torus on classical groups.
This whole construction is functorial. Suppose you have an algebraic group homomorphism

T → T ′, then we have a ring homomorphism O(T )← O(T ′). Because we have a map T → T ′
λ→ C×,

this ring map sends the character lattice X ′ to X.
This implies:

HomAlgGp(T,T ′) = HomZ−mod(X ′,X).
In terms of the cocharacters,

{C× → T}↔ HomZ(X,Z) ≅XV .

since each map takes t↦ tm, for some m ∈ Z.

How do we get a character and a cocharacter and get an integer? C× ϕ
→ T

λ→ C×. Specifically,
⟨λ,ϕ⟩ = the integer m associated to λ ○ ϕ.

[This may be connected to Langlands duality.]
Now let us move to the specific classical groups, G = GLn, SLn, PGLn, SOn or Sp2n, with its

torus subgroup.
G↷ G by conjugation, via θg(h) = ghg−1. Then θg ∶ G→ G has corresponding map of Lie groups

(dθg)1 ∶ G → G. This gives an action of G on G = LieG. For GLn, this is just matrix conjugation,
since

g(I + tA)g−1 = I + tgAg−1.

Hence this also holds for the rest of the classical groups (as subgroups/quotients of GLn).
T preserves T = Lie(T ) ⊂ Lie(G) = G and acts trivially on T.
T ⊂ G acts on G, which decomposes as G = ⊕α∈R∪{0}⊂X Gα. The Lie group T is in G0 in this

decomposition.

Example 27.1. Let G = GLn. Then the torus group is

T =
⎛
⎜
⎝

z1

⋱
zn

⎞
⎟
⎠
.

The coordinate ring is O(T ) = C[z±1
1 , . . . , z±1

n . The character lattice is Zn.

Conjugating A by T gives the matrix ( zi
zj
aij)

i,j

. So, for the Lie group G = GL\, we have G0 = t =

the diagonal matrices. The set of roots

R = {ziz−1
j ∶ j ≠ i} = {ei − ej ∶ i ≠ j} ⊆ Zn.
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Therefore, taking α = ei − ej , Gα = C ⋅Eij , where Eij = the matrix with 1 in the (i, j)-th position.

Example 27.2. Now, let G = SLn. Then we have the sequence

0→ TSLn → TGLn → CX → 0.

Translating to character lattices,

Z e1+⋯+enÐ→ XGLn = Zn →XSLn = Zn/Z ⋅ (1, . . . ,1)

in which (m1, . . . ,mn)↦ zm1
1 ⋯zmnn .

Thinking about the action on the Lie group, we have G = SL\. Again, G0 = T = the diagonal
matrices in SL\.

The root system is

R = {ēi − ēj} ⊆ Z/Z ⋅ (1, . . . ,1),
where the bar indicates the image of Z ⋅ (1, . . . ,1) ⊕ {(m1, . . . ,mn) ∶ m = 0} in Zn. Because these
subspaces are orthogonal, the image of each root is still distinct.

Geiej = Ct̄ij .

Example 27.3. Now consider PGLn = GLn/scalars. The torus is:

T =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

z1

⋱
zn

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
/
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

t
⋱

t

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

We have an exact sequence of groups:

0→ C× → TGLn → TPGLn → 0.

which gives us an exact sequence of character lattices in the opposite direction:

0← Z← Zn ←XPGLn ← 0.

Specifically,

PGLn = PSLn {(m) ∶ ∑mi = 0}

��

��

ei − ej

��

GLn

88

Zn

��

ei − ej

��

SLn

ff

OO

Zn/Z ⋅ (1, . . . ,1) ei − ej

µn = {e2πikn}

OO

We have a surjection of tori, which gives a discrete kernel determined by the degree of the covering
map. In general the character lattice of a torus X is a weight lattice, the sublattice generated by
roots is Q. (Many details here were missed)

28. Wednesday, November 14, 2012

[Class missed on Friday, November 9 for travel]
Given G, with Lie group

g = t⊕⊕
α∈Ω

gα.
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ϕα ∶ SL2
// G

sl2 // g

E � // χα

F � // χ−α

H � // “α”

sα(β) = β − ⟨β,α∨⟩α.

sα ∶X →X.

sα is the reflection fixing ⟨−, α∨⟩ = 0, sending α to −α.
W = the Weyl group is the group of symmetries of X generated by sα’s. It acts on R (and on

R∨ ⊂X∨).

Take s ∈ SL2 = ( 0 1
−1 0

) and H = ( 1 0
0 −1

). ϕα(s) normalizes T ⊂ G. Then → T .

C× ⊂ SL2

��

sl2

��

H

��

T g h

We find sl2 ≅ gα ⊕Ch⊕ g−α.
The element ϕα(s) defines an element s●α ∈ N(T ) ⊂ G the normalizer of the torus, which maps

to sα ∈ N(T )/T . Note s2
α = 1.

From the action G↷ V , the action of the subtorus T gives a weight space decomposition

V = ⊕
λ∈X

Vλ, X =X(T ).

s●α(Vλ) = Vsα(λ).

Notation 28.1. We have a map from 2×2 matrices into the group by selecting α off-diagonal, and
takes the 2 × 2 matrix whose diagonal coincides with the torus, and let everything else be identity.

ϕα ∶ SL2 → G

The image in the Lie algebra is only the off-diagonal entry.

The lie group of the subtorus is

t = t′ ⊕Ch

α∨ ∶ C×
� _

��

// T � _

��

SL2
// G

sl2 ≅

⎛
⎜⎜⎜⎜⎜
⎝

0
a c

0 0 0
b −a

0

⎞
⎟⎟⎟⎟⎟
⎠

⊂ gln

S●α ↷ T acts on the character lattice by the same reflection as the sα that we formally defined
earlier.
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28.1. Examples. Consider GLn.

● The torus T = diagonal matrices
⎛
⎜
⎝

z1

⋱
zn

⎞
⎟
⎠
≅ (C×)n.

● The Lie algebra gln = n × n matrices.
● t is the subgroup of diagonal matrices.
● gα = C ⋅Eij , i ≠ j, where α = ei − ej in g, or ziz

−1
j , in G.

● ϕα maps SL2 → GLn by sending:

( a b
c d

)↦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0
a ⋯ b

1
⋮ ⋱ ⋮

1
c ⋯ d

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, ad − bc = 1.

● We have s●α = ϕα applied to the matrix ( 0 1
−1 0

).

s●α =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0
0 ⋯ 1

1
⋮ ⋱ ⋮

1
−1 ⋯ 0

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

● Given character lattice X = Zn, then sα = (ij) fixes those vectors which have mi =mj , and
sends the vector that has mi = −mj to its opposite.

29. Friday, November 16, 2012

Recall that the root system of GLn is given by looking at the generic torus. The root system is
X = Zn. Mapping zm ↦ zi/zj .

Then the elements α = ei − ej where ei is the basis for Zn = X. e∨i is a basis for X∨ ≅ Zn. The
action Sα(m) = (ij) describe an action on the roots which generates an action of Sn. Alternatively,
you can think about an element of SL2 in the normalizer of the torus.

The Weyl group can be defined as the group of symmetries on the lattice X; alternatively, it
can be described by its corresponding action on the torus – specifically, the normalizer of the torus
mod the torus N(T )/T .

29.1. Root System of SO2n+1. Let us try a different example. We take the special orthogonal
group on an odd number of elements, since it comes out different depending on parity.

Recall we can define these as matrices that fix a bilinear form ⟨, ⟩, where the bilinear form is
defined by

⟨x, y⟩ = xTJy, J =
⎛
⎜⎜
⎝

1

. .
.

1

⎞
⎟⎟
⎠
.
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This is a generic element of the subtorus:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

zn
⋱

z1

1
z−1

1

⋱
zn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The Lie group so2n+1 is then given by matrices such that the antitranspose is the negative
AR = −A.

Now we want to decompose: so2n+1 = t⊕?.
Consider t acting on A by conjugation:

tAt−1 = χ(t)A.⇒ t−1AT t = χ(t)AT .

⇒ tAT t−1 = χ(t−1)AT ⇒ χ(t−1) = χ(t)−1.

T ⊂ B = {upper triangular matrices in G}.
Lie B = t⊕ ⊕

α∈R+
gα.

ei − ej , such that i < j is an element of R+, the positive root system.
The α = ei − ej is given by a zero matrix with 1 in the (ij) position and −1 so that its reverse

transpose will be its negative, i.e. (2n + 2 − j,2n + 2 − i).
The basis for the standard representation of SO2n+1 given by v1, . . . , v2n+1 ≅ C2n+1 can be thought

of as C2n+1 = Cn ⊕C⊕ (Cn)∗.
To preserve the inner product, we only need to act on the dual space with the transpose of

whatever action we use on the first Cn.
Again we can take the action of ϕα(SL2) → GLn → SO2n+1, where the action is defined by

putting the matrix as the ij 2 × 2 submatrix in the first Cn, and then its dual on the dual space.
α∨ gives a map from C× to the torus T , by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
t
t−1

1
t
t−1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

i.e. zi = t, zj = t−1, and the antitranspose property is the inverse.
This is only one block of the group action. Instead of having j ≤ n, what if we have j = n+1 (i.e.

in the same column as the central 1)?
SL2 acts on sl2 ≅ C3. The group of isometries on C3 is SO3. We can use this to map SL2 to

SO3. Since E,F , and H are a basis for the action on sl2, we know that H has matrix in SO3:

⎛
⎜
⎝

2
0

2

⎞
⎟
⎠
.

This map carries

( t
t−1 )↦

⎛
⎜
⎝

2
0

2

⎞
⎟
⎠
.
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α∨ is the map zi ↦ t2, zj ↦ 1.
Changing the basis from SL2 to SO3, and carrying over the bilinear form tr(XY ) defines a

symmetric, non degenerate inner product on sl2.
This gives us root 2ei.

30. November 19, 2012

Recall we were discussing the group SO2n+1 defined by matrices whose inverse are their reverse
transpose (transpose over the anti diagonal).

We have a map

SL2
ϕα→ GLn ↪ SO2n+1

by sending an invertible 2 × 2 matrix A mapping to the n × n matrix M with submatrix A in the
index α and identity elsewhere, and then sending that to the orthogonal matrix with three blocks:
M , 1, and (M−1)R, where R indicates the reverse transpose.

This was for the case α = ei − ej where 1 ≤ i < j ≤ n.
In the case of i = n + 1, we can consider SL2 as a subgroup of SO3 in that both act on sl2 ≅ C3.

SO3 also acts on C{vi, vn+1, v2n+2−i} Bilinear form which sl2 preserves is ⟨X,Y ⟩ = trXY .
The map from SL2 → SO3 actually factors through PSL2 = SL2/{±1}.
Then the root is α = ei. But α∨ = 2e∨i .
Now we have one final type of root, where 1 ≤ i < n + 1 < j, i.e. something in the northeast

quadrant.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

zi 1
zj −1

1
z−1
j

z−1
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Here we have SL2 ↷ C ⋅ {vi, v2n+2−j} and dually on C ⋅ {vj , v2n+2−i}.
So we have α = ei + ej , and α∨ = e∨i + e∨j .

So, our root system R+ = (I) ∪ (II) ∪ (III), where these are the three types listed.
As for the Weyl group:

(1) switch mi ↔mj in (m1, . . . ,mn) ∈ Zn =X.
(2) mi ↔ −mi.
(3) mi ↔ −mj .

This leaves us with the Weyl group W = the group of signed permutations Bn = Sn ⋉ {±1}n.

Exercise 30.1. Work out Sp2n:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

zn
⋱

z1

z−1
1

⋱
zn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

X = Zn. Root system is the same as SO2n+1, except we get 2ei, e
∨
i instead. In particular, this

implies SO2n+1, Sp2n are Langlands dual.
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Sp2n/{±1} has the same root system as Sp2n except X becomes

Y ⊆ Zn = {(m1, . . . ,mn) ∶∑mi even},
and X∨ becomes

Y ∨ = Zn ∪ (Zn + (1

2
, . . . ,

1

2
)).

Then what is the Langlands dual?
It is the odd-dimensional Spin2n+1 defined as a central extension of our group, as illustrated by

the sequence:
0→ Z/2Z→ Spin2n+1 ↠ SO2n+1 → 0.

The smallest representation of the Spin group that does not factor through SO2n+1 acts on a
Clifford algebra of dimension ≈ 22n+1. (huge.)

Let V be a G-module. Then it is also a T -module (on the subtorus T ⊂ G). Then, V ∣T is a direct
sum of 1-dimensional submodules. The isotypic components are called weight spaces.

This gives the decomposition V =⊕λ∈X Vλ.

Definition 30.2. The character of V ,

ch(V ) ∶=∑
λ

dimVλx
λ ∈ O(T ) = C ⋅X,

where xλ is a way of denoting the character λ ∶ T → C×.

Example 30.3. Consider SL3 and the SL3-module sl3. This decomposes as t⊕⊕α∈R gα. Then,

ch(V ) = 2 ⋅ 1 + z1/z2 + z1/z3 + z2/z3 + z2/z1 + z3/z1 + z3/z2.

This is because α = ei − ej and xα = zi/zj .

Remark 30.4.
ch(V )∣1 = dimV.

This sum is trV (t) as a function of t ∈ T .

W = N(T )/T acts on the set of weight spaces. ẇ ∈ N(T ) will determine how the torus maps into
the weight spaces, but only w determines which weight spaces it goes to.
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