HW4 MATH 420

Here are the exercise from the book:
Section $2.2 \quad \#$ 10, 11, 15, 20
Section $2.3 \quad \# 3,5,8,9$
Section 2.4 \# 5, 6, 7
Here are the ones not from the book:
Problem 1: Find the general solutions for

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=3 x-y^{1007} \tag{0.1}\\
\frac{d y}{d t}=-2 y
\end{array}\right.
$$

Problem 2.
(1) Let a be a constant, $f_{1}(t)$ and $f_{2}(t)$ be functions of t. Prove that if $X_{1}(t)$ is a solution for

$$
\frac{d x}{d t}=a x+f_{1}(t)
$$

and $X_{2}(t)$ is a solution for

$$
\frac{d x}{d t}=a x+f_{2}(t)
$$

Then $X_{1}(t)+X_{2}(t)$ is a solution for

$$
\frac{d x}{d t}=a x+f_{1}(t)+f_{2}(t)
$$

(2) Can you generalize this result? Let $1 \leq i \leq n$, if $X_{i}(t)$ be a solution for

$$
\frac{d x}{d t}=a x+f_{i}(t)
$$

Then $X(t)=\sum_{i=1}^{n} X_{i}(t)$ is a solution for

$$
\frac{d x}{d t}=a x+\sum_{i=1}^{n} f_{i}(t)
$$

(3) Use the above result to find the solutions for the following system:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=3 x+y^{\alpha}+y^{\beta}+y^{\gamma}, \tag{0.2}\\
\frac{d y}{d t}=-y
\end{array}\right.
$$

where $\alpha=$ the year you came to Penn, $\beta=$ the year you will leave Penn, $\gamma=$ the year Penn was founded.

[^0]
[^0]: Date: September 24, 2014.

