Math 114. Fall 2014. Practice Exam

Problem 1. Find a unit vector orthogonal to both (1, 1, 0) and (1, 2, 3).

Problem 2. What is the distance from the origin to the plane x + 2y + 3z = 6:

Problem 3. The planes 3x + 2y + z = 6 and x + y = 2 intersect in a line ℓ . Find the distance from the origin to ℓ .

Problem 4. Find the area of the triangle whose vertices are A = (0, 0, 1), B = (1, 2, 1) and C = (0, 0, 0). What is the angle between the two edges AB and AC?

Problem 5. Find the point in the plane 3x + 2y + z = 5 which is closest to (0, 0, 0).

Problem 6. A missile is launched from the top of a 15m high cliff. The missile reaches a maximum height of 20m and lands 60m away from its initial position. Find the missiles initial velocity.

Problem 7. On a strange planet, the acceleration due to gravity is given by $\vec{a}(t) = -6t\vec{j}$ m/s^2 . A projectile is fired from ground level with an initial velocity of 10m/s in the horizontal direction and 49m/s in the vertical direction. How far has the projectile travelled horizontally when it strikes the ground?

Problem 8. The lines

$$x = 3 + 2t \qquad x = -1 - s$$

$$y = 3 + 3t \qquad y = 8 + 4s$$

$$z = -t \qquad z = 5 + 2s$$

intersect in a point P. write down an equation for a line which is perpendicular to these lines and which passes through P.

Problem 9. Find the relation between α and β such that the following two planes are perpendicular to each other

$$2x - y + \beta z = 2014$$
$$(\alpha - 3)x + 11y - 6z = 0$$

Problem 10. A particle has an acceleration $\vec{a}(t) = t\vec{i} + t^2\vec{j} + 2\vec{k}$. If its initial velocity is $v_0 = \langle 1, 3, 7 \rangle$ and it is initially at the origin, find its position function $\vec{r}(t)$.

Problem 11. Find the arc length of the curve

$$\mathbf{r}(t) = \langle t^2, \cos t + t \sin t, \sin t - t \cos t \rangle$$

for $0 \le t \le \sqrt{2}$.

Problem 12. Find the arc length of the curve

$$\vec{r}(t) = (\cos t)^3 \vec{j} + (\sin t)^3 \vec{k}$$

between t = 0 and t = 4.

Problem 13. Find the curvature

$$\mathbf{r}(t) = \langle t^2, \cos t + t \sin t, \sin t - t \cos t \rangle$$

when t = 1.

Problem 14. Find the maximum curvature of the curve $\mathbf{r}(t) = \langle t, t, t^2 \rangle$.

Problem 15. Consider the helix $\mathbf{r}(t) = \langle 3 \cos t, 3 \sin t, 4t \rangle$, compute

- a. \vec{T}, \vec{N} and \vec{B} at time t = 0;
- b. The curvature κ at time t = 0;
- c. a_T and a_N where $\vec{a} = a_T \vec{T} + a_N \vec{N}$ at time t = 0.