Math 114. Fall 2014. Practice Exam

Problem 1. Find a unit vector orthogonal to both $\langle 1,1,0\rangle$ and $\langle 1,2,3\rangle$.
Problem 2. What is the distance from the origin to the plane $x+2 y+3 z=6$:
Problem 3. The planes $3 x+2 y+z=6$ and $x+y=2$ intersect in a line ℓ. Find the distance from the origin to ℓ.

Problem 4. Find the area of the triangle whose vertices are $A=(0,0,1), B=(1,2,1)$ and $C=(0,0,0)$. What is the angle between the two edges $A B$ and $A C ?$

Problem 5. Find the point in the plane $3 x+2 y+z=5$ which is closest to $(0,0,0)$.
Problem 6. A missile is launched from the top of a 15 m high cliff. The missile reaches a maximum height of 20 m and lands 60 m away from its initial position. Find the missiles initial velocity.

Problem 7. On a strange planet, the acceleration due to gravity is given by $\vec{a}(t)=-6 t \overrightarrow{\mathbf{J}}$ $\mathrm{m} / \mathrm{s}^{2}$. A projectile is fired from ground level with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$ in the horizontal direction and $49 \mathrm{~m} / \mathrm{s}$ in the vertical direction. How far has the projectile travelled horizontally when it strikes the ground?

Problem 8. The lines

$$
\begin{array}{rl}
x=3+2 t & x=-1-s \\
y=3+3 t & y=8+4 s \\
z=-t & z=5+2 s
\end{array}
$$

intersect in a point P. write down an equation for a line which is perpendicular to these lines and which passes through P.

Problem 9. Find the relation between α and β such that the following two planes are perpendicular to each other

$$
\begin{gathered}
2 x-y+\beta z=2014 \\
(\alpha-3) x+11 y-6 z=0
\end{gathered}
$$

Problem 10. A particle has an acceleration $\vec{a}(t)=t \vec{i}+t^{2} \vec{j}+2 \vec{k}$. If its initial velocity is $v_{0}=\langle 1,3,7\rangle$ and it is initially at the origin, find its position function $\vec{r}(t)$.

Problem 11. Find the arc length of the curve

$$
\mathbf{r}(t)=\left\langle t^{2}, \cos t+t \sin t, \sin t-t \cos t\right\rangle
$$

for $0 \leq t \leq \sqrt{2}$.

Problem 12. Find the arc length of the curve

$$
\vec{r}(t)=(\cos t)^{3} \vec{j}+(\sin t)^{3} \vec{k}
$$

between $t=0$ and $t=4$.
Problem 13. Find the curvature

$$
\mathbf{r}(t)=\left\langle t^{2}, \cos t+t \sin t, \sin t-t \cos t\right\rangle
$$

when $t=1$.
Problem 14. Find the maximum curvature of the curve $\mathbf{r}(t)=\left\langle t, t, t^{2}\right\rangle$.
Problem 15. Consider the helix $\mathbf{r}(t)=\langle 3 \cos t, 3 \sin t, 4 t\rangle$, compute
a. \vec{T}, \vec{N} and \vec{B} at time $t=0$;
b. The curvature κ at time $t=0$;
c. a_{T} and a_{N} where $\vec{a}=a_{T} \vec{T}+a_{N} \vec{N}$ at time $t=0$.

