12.4
 Cross Product

Review:

The dot product of $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is $\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$

$$
|\mathbf{u}|=\sqrt{\mathbf{u} \cdot \mathbf{u}} \quad \mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta \quad \text { or } \quad \cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}
$$

\mathbf{u} and \mathbf{v} are orthogonal if and only if $\mathbf{u} \cdot \mathbf{v}=0$

$$
\operatorname{comp}_{\mathbf{v}} \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}
$$

$$
\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}
$$

$\operatorname{proj}_{\mathbf{v}} \mathbf{u}$
cross product

$$
\mathbf{u} \times \mathbf{v}=\left(u_{2} v_{3}-u_{3} v_{2}\right) \mathbf{i}-\left(u_{1} v_{3}-u_{3} v_{1}\right) \mathbf{j}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \mathbf{k}
$$

$\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and $\mathbf{v} . \quad|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}| \sin \theta$

Geometric description of the cross product of the vectors u and v

The cross product of two vectors is a vector!

- $\mathbf{u} \mathbf{x} \mathbf{v}$ is perpendicular to \mathbf{u} and \mathbf{v}
- The length of $\mathbf{u} \mathbf{x} \mathbf{v}$ is $|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}| \sin \theta$
- The direction is given by the right hand side rule

Right - hand rule

Place your 4 fingers in the direction of the first vector,
curl them in the direction of the second vector,

Your thumb will point in the direction of the cross product

Algebraic description of the cross product of the vectors u and v The cross product of $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is $\mathbf{u} \times \mathbf{v}=\left\langle u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right\rangle$

$$
\text { check }(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}=0 \text { and }(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v}=0
$$

$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}=\left\langle u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right\rangle \cdot\left\langle u_{1}, u_{2}, u_{3}\right\rangle$

$$
=u_{2} v_{3} u_{1}-u_{3} v_{2} u_{1}+u_{3} v_{1} u_{2}-u_{1} v_{3} u_{2}+u_{1} v_{2} u_{3}-u_{2} v_{1} u_{3}=0
$$

similary: $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v}=0$
length $|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}| \sin \theta$ is a little messier :

$$
|\mathbf{u} \times \mathbf{v}|^{2}=|\mathbf{u}|^{2}|\mathbf{v}|^{2} \sin ^{2} \theta=|\mathbf{u}|^{2}|\mathbf{v}|^{2}\left(1-\cos ^{2} \theta\right)=|\mathbf{u}|^{2}|\mathbf{v}|^{2}\left(1-\frac{(\mathbf{u} \cdot \mathbf{v})^{2}}{|\mathbf{u}|^{2}|\mathbf{v}|^{2}}\right)=|\mathbf{u}|^{2}|\mathbf{v}|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}
$$

now need to show that $|\mathbf{u} \times \mathbf{v}|^{2}=|\mathbf{u}|^{2}|\mathbf{v}|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2} \quad$ (try it..)

An easier way to remember the formula for the cross products is in terms of determinants:

2×2 determinant: $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c \quad\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|=4-6=-2$
3×3 determinants: An example
Copy $1^{\text {st }} 2$ columns
\(\left|\begin{array}{ccc}1 \& 6 \& -2

3 \& -1 \& 3

4 \& 5 \& 2\end{array}\right| \quad \left\lvert\,\)| 1 | 6 | -2 | 1 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| 3 | -1 | 3 | 3 | -1 |
| 4 | 5 | 2 | 4 | 5 |\(\quad\left(\begin{array}{c}sum of

forward

diagonal

products\end{array}\right) \quad-\left($$
\begin{array}{c}\text { sum of } \\
\text { backward } \\
\text { diagonal } \\
\text { products }\end{array}
$$\right)\right.\)

$$
\text { determinant }=(-2+72-30)-(8+15+36)=40-59=-19
$$

recall: $\mathbf{u} \times \mathbf{v}=\left\langle u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right\rangle$

$$
\begin{aligned}
\text { now we claim that } \begin{aligned}
\mathbf{u} \times \mathbf{v} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
& =\mathbf{i} u_{2} v_{3}+\mathbf{j} u_{3} v_{1}+\mathbf{k} u_{1} v_{2}-\mathbf{k} u_{2} v_{1}-\mathbf{i} u_{3} v_{2}-\mathbf{j} u_{1} v_{3}
\end{aligned}, \begin{array}{ccc|cc}
\mathbf{i} & \mathbf{j} & \mathbf{k} & \mathbf{i} & \mathbf{j} \\
u_{1} & u_{2} & u_{3} & u_{1} & u_{2} \\
v_{1} & v_{2} & v_{3} & v_{1} & v_{2}
\end{array}
\end{aligned}
$$

$$
\mathbf{u} \times \mathbf{v}=\left(u_{2} v_{3}-u_{3} v_{2}\right) \mathbf{i}-\left(u_{1} v_{3}-u_{3} v_{1}\right) \mathbf{j}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \mathbf{k}
$$

$$
\mathbf{u} \times \mathbf{v}=\left\langle u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right\rangle
$$

Example: \quad Let $\mathbf{u}=\langle 1,-2,1\rangle$ and $\mathbf{v}=\langle 3,1,-2\rangle$ Find $\mathbf{u} \times \mathbf{v}$.

$$
\begin{aligned}
& \mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -2 & 1 \\
3 & 1 & -2
\end{array}\right|= \\
& \mathbf{u} \times \mathbf{v}=(4-1) \mathbf{i}+(3+2) \mathbf{j}+(1+6) \mathbf{k} \\
& \mathbf{u} \times \mathbf{v}=\langle 3,5,7\rangle
\end{aligned}
$$

Geometric Properties of the cross product:
Let \mathbf{u} and \mathbf{v} be nonzero vectors and let θ be the angle between \mathbf{u} and \mathbf{v}.

1. $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v}.
2. $|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}| \sin \theta$
3. $\mathbf{u} \times \mathbf{v}=\mathbf{0}$ if and only if \mathbf{u} and \mathbf{v} are scalar multiples of each other (they are parallel)
4. $|\mathbf{u} \times \mathbf{v}|=$ area of the parallelogram determined by \mathbf{u} and \mathbf{v}.

5. $\frac{1}{2}|\mathbf{u} \times \mathbf{v}|=$ area of the triangle having
\mathbf{u} and \mathbf{v} as adjacent sides.

Problem: Compute the area of the triangle with vertices $(2,3,4),(1,3,2),(3,0,-6)$
Two sides are: $\mathbf{u}=\langle 1,0,2\rangle$ and $\mathbf{v}=\langle-1,3,10\rangle$

$$
\begin{aligned}
& \mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & 2 \\
-1 & 3 & 10
\end{array}\right| \quad\left|\begin{array}{ccc|c}
\mathbf{i} & \mathbf{j} & \mathbf{k} & \mathbf{i} \\
1 & 0 & 2 & 1 \\
-1 & 3 & -2
\end{array}\right|-1 \\
= & (0-6) \mathbf{i}+(-2-10) \mathbf{j}+(3-0) \mathbf{k} \\
= & -6 \mathbf{i}-12 \mathbf{j}+3 \mathbf{k} \\
= & \langle-6,-12,3\rangle \quad|\mathbf{u} \times \mathbf{v}|=\sqrt{36+144+9}=\sqrt{189} \quad \text { area }=\frac{3}{2} \sqrt{21}
\end{aligned}
$$

Algebraic Properties of the cross product:
Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors and let c be a scalar.

1. $\mathbf{u} \times \mathbf{v}=-(\mathbf{v} \times \mathbf{u})$

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|
$$

$$
=\left\langle u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right\rangle
$$

2. $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=\mathbf{u} \times \mathbf{v}+\mathbf{u} \times \mathbf{w}$
3. $(c \mathbf{u}) \times \mathbf{v}=\mathbf{u} \times(c \mathbf{v})=c(\mathbf{u} \times \mathbf{v})$
4. $\mathbf{0} \times \mathbf{v}=\mathbf{v} \times \mathbf{0}=\mathbf{0}$
5. $(\mathrm{cv}) \times \mathbf{v}=\mathbf{0}$
6. $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$
7. $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$

Volume of the parallelepiped determined by the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c}.

$$
\begin{aligned}
& \text { Area of the base }=|\mathbf{b} \times \mathbf{c}| \\
& \text { Height }=\operatorname{comp}_{\mathbf{b} \times \mathbf{c}} \mathbf{a}=|\mathbf{a}| \cos \theta \\
& \text { Volume }=|\mathbf{b} \times \mathbf{c}||\mathbf{a}| \cos \theta \\
& \text { Volume }=|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})| \leftarrow_{\text {for absolute value }}^{\text {this stads }}
\end{aligned}
$$

$\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$ is called the scalar triple product

The vectors are in the same plane (coplanar) if the scalar triple product is 0.

Problem: Compute the volume of the parallelepiped spanned by the 3 vectors

$$
\mathbf{u}=\langle 1,0,2\rangle, \mathbf{v}=\langle-1,3,-2\rangle \text { and } \mathbf{w}=\langle-1,3,-4\rangle
$$

Solution:

$$
\langle-6,0,3\rangle \cdot\langle-1,3,-4\rangle
$$

From slide 10: $\quad \mathbf{u} \times \mathbf{v}=\langle-6,0,3\rangle$

$$
=6-12=-6 \quad \text { Volume }=6
$$

Quicker:

$$
\begin{aligned}
& (\mathbf{u} \times \mathbf{v}) \cdot \mathrm{w}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \cdot\left\langle w_{1}, w_{2}, w_{3}\right\rangle \\
= & \left|\begin{array}{ccc|ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} & \mathbf{i} & \mathbf{j} \\
u_{1} & u_{2} & u_{3} & u_{1} & u_{2} & \cdot\left\langle w_{1}, w_{2}, w_{3}\right\rangle=\left|\begin{array}{lll}
w_{1} & w_{2} & w_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| v_{1} \\
v_{1} & v_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|
\end{aligned}
$$

$$
(\mathbf{u} \times \mathbf{v}) \cdot \mathrm{w}=\left|\begin{array}{ccc}
-1 & 3 & -4 \\
1 & 0 & 2 \\
-1 & 3 & -2
\end{array}\right|=(0-6-12)-(-6-6-0)
$$

Triple scalar product

$$
(\mathbf{u} \times \mathbf{v}) \cdot \mathrm{W}=\left|\begin{array}{ccc}
w_{1} & w_{2} & w_{3} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|=\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})
$$

In physics, the cross product is used to measure torque.

Consider a force \mathbf{F} acting on a rigid body at a point given by a position vector \mathbf{r}.
The torque (τ) measures the tendency of the body to rotate about the origin (point P)

$$
\begin{aligned}
\tau & =\mathbf{r} \times \mathbf{F} \\
|\tau| & =|\mathbf{r} \times \mathbf{F}|=|\mathbf{r}||\mathbf{F}| \sin \theta
\end{aligned}
$$

(θ is the angle between the force and position vectors)

- \mathbf{r}

12.5

Lines and Planes

Recall how to describe lines in the plane (e.g. tangent lines to a graph):
$y=m x+b \quad m$ is the slope $\quad b$ is the y intercept

Point slope formula: $\quad \frac{y-y_{0}}{x-x_{0}}=m \quad\left(x_{0}, y_{0}\right)$ is on the line

Two point formula: $\quad \frac{y-y_{0}}{x-x_{0}}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}} \quad \begin{aligned} & \left(x_{0}, y_{0}\right) \text { and }\left(x_{1}, y_{1}\right) \\ & \text { are on the line }\end{aligned}$

Equations of Lines and Planes

In order to find the equation of a line, we need :
A) a point on the line $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$
B) a direction vector for the line $\mathbf{v}=\langle a, b, c\rangle$

$$
\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v} \quad \text { vector equation of line } L
$$

$$
\overrightarrow{P_{0} P}=t \mathbf{v}=t\langle a, b, c\rangle \text { for some } t
$$

Here \mathbf{r}_{0} is the vector from the origin to a specific point P_{0} on the line
\mathbf{r} is the vector from the origin to
a general point $\mathrm{P}=(x, y, z)$ on the line
\mathbf{v} is a vector which is parallel to a vector that lies on the line
\mathbf{v} is not unique: $2 \mathbf{v}$, or $-\mathbf{v}$ will also do
vector equation of the line L

$$
\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v} \quad \text { or } \quad\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle
$$

equating components we get the parametric equations of the line L

$$
x=x_{0}+a t, \quad y=y_{0}+b t, \quad z=z_{0}+c t
$$

Solving for t we get the symmetric equations of the line L

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

Problem:

Find the parametric equations of the line containing $\mathrm{P}_{0}=(5,1,3)$ and $\mathrm{P}_{1}=(3,-2,4)$.
A) a point on the line $P_{0}\left(x_{0}, y_{0}, z_{0}\right) \quad$ choose $\mathrm{P}_{0}=(5,1,3)$
(could also choose

$$
\left.\mathrm{P}_{0}=(3,-2,4)\right)
$$

B) a direction vector for the line $\mathbf{v}=\langle a, b, c\rangle$

$$
\begin{aligned}
& \mathbf{v}=\overrightarrow{P_{0} P_{1}}=P_{1}-P_{0}=\langle 3-5,-2-1,4-3\rangle=\langle-2,-3,1\rangle \\
& \text { or } \quad \mathbf{v}=\langle 2,3,-1\rangle \\
&\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle=\langle 5,1,3\rangle+t\langle 2,3,-1\rangle
\end{aligned}
$$

The line is: $x=5+2 t, \quad y=1+3 t, \quad z=3-t$

Two lines in 3 space can interact in 3 ways:

A) Parallel Lines -

their direction vectors are scalar multiples of each other

B) Intersecting Lines -

there is a specific t and s, so that the lines share the same point.
C) Skew Lines -
their direction vectors are not parallel and there is no values of t and s that make the
 lines share the same point.

Problem: Determine whether the lines L_{1} and L_{2} are parallel, skew or intersecting. If they intersect, find the point of intersection.

$$
L_{1}: x=3-t, y=5+3 t, z=-1-4 t \quad L_{2}: x=8+2 s, y=-6-4 s, z=5+s
$$

Set the x coordinate equal to each other: $3-t=8+2 s$, or $2 s+t=-5$
Set the y coordinate equal to each other:

$$
5+3 t=-6-4 s, \text { or } 4 s+3 t=-11
$$

We get a system of equations:

$$
\begin{aligned}
& 2 s+t=-5 \\
& 4 s+3 t=-11
\end{aligned}
$$

or

$$
4 s+2 t=-10
$$

$$
t=-1
$$

$$
4 s+3 t=-11
$$

$$
s=-2
$$

$$
-1-4 t=5+s
$$

Check to make sure that the z
values are equal for this t and s.

$$
\begin{aligned}
-1-4(-1) & =5+(-2) \\
3 & =3 \text { check }
\end{aligned}
$$

Find the point of intersection using L_{1} :

$$
\begin{aligned}
& x=3-(-1) \\
& y=5+3(-1) \\
& z=-1-4(-1)
\end{aligned} \quad(4,2,3)
$$

