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 The Dark Side of the Moebius Strip

 GIDEON E. SCHWARZ, Hebrew University, Jerusalem

 GIDEON E. SCHWARZ: Born 1933 in Salzburg, Austria. Escaped in 1938,
 after the Anschluss, to Palestine, today Israel. M.Sc. in Mathematics at the
 Hebrew University, Jerusalem in 1956. Ph.D. in Mathematical Statistics at
 Columbia University in 1961. Research fellowships: Miller Institute 1964-66,
 Institute for Advanced Studies on Mt. Scopus 1975-76. Visiting appoint-
 ments: Stanford University, Tel Aviv University, University of California in
 Berkeley. Since 1961, Fellow of the Institute of Mathematical Statistics.
 Presently, Professor of Statistics at the Hebrew University.

 The Moebius strip has now been around for over a century. Everybody knows
 how to make one, as a real-world object as well as abstractly. And yet, as a
 geometrical configuration in three-dimensional Euclidean space, there is still no
 satisfactory model for it. Furthermore, most of the attempts in this direction have
 remained relatively unknown. The following is an account of what I found after
 some search, and some research, about these matters. In particular: a smooth flat
 model, as had been also found by Sadowsky [1930, no. 4]; two smooth flat algebraic
 models, one defined by Wunderlich [1962], and one found independently by myself
 [1988]; some results concerning the shortest Moebius strip, by Barr [1964], who also
 reports results of Gardner; some by myself, first reported here; a formulation of a
 variational problem-the Moebius strip of least elastic energy-by Sadowsky
 [1930, no. 5]; and, finally, my own conjecture, as it emerges from all the facts listed
 here plus some observations of real-world Moebius strips.

 1. What exactly is a Moebius strip? On one hand, it is often defined as the
 topological space attained by starting with a (closed) rectangle, endowed with the
 "usual" topology, and identifying two opposite edges point by point with each
 other, so that each vertex gets identified with the one diagonally across. This
 "abstract Moebius strip" serves in topology as the canonical example of a nonori-
 entable manifold.

 On the other hand, there is a physical model of the abstract strip, and it is
 usually denoted by the same term. Its inventor Moebius [1865] (also spelled
 "Mobius", but "Mobius" is not an acceptable spelling), described it as follows: a
 paper rectangle that is sufficiently long and narrow is bent and twisted so that its
 two shorter edges can be glued together in the required manner.

 Between the abstract topological space and its physical model lie some concepts
 of intermediate degrees of abstraction. For example, besides a physical model for
 the topological strip, one can ask for a geometrical model in three-dimensional
 Euclidean space. Such a model will be provided by a subset of 3-space, that is
 homeomorphic to the topological strip. A simple approach to constructing such an
 "embedding" of the strip in 3-space consists of imitating the physical twisting that
 takes place when the paper strip is produced. Fix a line in three space, and pick a
 segment that is coplanar with the line, perpendicular to it and disjoint from it.
 Rotate the plane, and the segment with it, around the fixed line. At the same time,
 in the rotating plane, rotate the segment around its midpoint. If the second
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 THE DARK SIDE OF THE MOEBIUS STRIP 891

 rotation is carried out at half the angular velocity of the first one, the segment will
 have completed half a turn around its center when it has gone once around the
 line, and thus will meet itself with the required twist. If the fixed line is chosen as
 the z-axis of a coordinate system, the initial position of the segment is chosen to be
 [R - 1, R - 1] on the x-axis, for some R > 1, and the angles by which the two
 rotations have progressed are t and lt, respectively, then the equations

 x(s, t) = (R + s cos 't)cos t y(s, t) = (R + s cos 1t)sin t,
 z(s, t) = s sin 1 t,

 for - 1 < s < 1, 0 < t < 2wr, define the embedding. The fact that for all s the
 functions at (s, 2w7) agree with their values at (-s, 0) reflects the identifying of the
 opposite sides of the rectangle. Besides being homeomorphic to the topological
 Moebius strip, this model has the advantage of using only analytic functions of s

 and t. In fact, it is not only analytic-it is algebraic: it is possible to eliminate s
 and t from the expressions for the coordinates, and to represent the strip as part
 of an algebraic surface, that is, as the set of points where a polynomial in the
 coordinates takes on the value 0.

 There is, however, also a drawback to this model. The nature of this drawback
 will become clear after taking a closer look at the physical model, the paper strip.
 It was produced by bending and glueing, but no stretching was used: any curve
 drawn on the paper rectangle would have became a space curve of the same
 length. A mathematical model that reflects this property of the paper strip would
 be an isometric embedding. The following considerations show that the model
 defined above fails on that score. The center line of the rectangle is the line s = 0,
 and its image under the embedding is the circle of radius R around the origin in
 the x-y plane. Its length is 2wR, and an appropriate rescaling would have matched
 this value with the length of the rectangle in the (s, t)-plane. However, the other
 lines of the form s = constant go into curves of greater length. To see this, find the
 velocity at which a point on the strip moves when s is fixed, and t is regarded as
 "time." The velocity can be split into two components, one in the plane through
 the point and the z-axis, and one perpendicular to it. Their magnitudes are
 R + s cos -t and is, respectively. The total velocity is, therefore, strictly greater
 than the first part, whenever s is not 0. Since integration of the first part from
 t = 0 to t = 2w yields just 2rR (note that the cosine term contributes nothing to
 the definite integral), the space-curve corresponding to nonzero constant s is
 strictly longer than the circle of radius R. The model is therefore not a valid
 representation of any Moebius strip that can be made out of a paper rectangle.
 Could it fit a strip made out of a differently shaped piece of paper? Again the
 answer is no, but in order to see this, a local consequence of the absence of
 stretching will have to be considered.

 A differentiable surface can be approximated in the neighborhood of any one of
 its points by a plane, the tangent plane at the point. If the surface is twice
 differentiable, it can be approximated to a higher degree of approximation by a
 quadric. Among twice differentiable surfaces, those that are obtained by bending,
 but not stretching, paper, are characterized by the property that the approximating
 quadrics will be planes or parabolic cylinders. Surfaces with this property, that
 holds if and only if the matrix of the second derivatives of z with respect to x and
 y is singular, are called "flat surfaces." It is one of the classical results of
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 892 GIDEON E. SCHWARZ [December

 differential geometry, that among twice differentiable surfaces, a piece of plane

 can be mapped isometrically only onto flat ones.

 To the point (s = 0, t = 0) of the rectangle there corresponds the point (x = R,
 y = 0,. z = 0) in space. In a neighborhood of this point, the Taylor expansion
 shows that z = - R)y/R is true modulo third and higher powers of the

 distance from between (x, y) and (R, 0). The strip is, therefore, locally approxi-
 mated by a hyperboloid at that point.. Therefore, the surface is not flat, and

 consequently, the model fails to represent any paper model of the Moebius strip.

 2. The simplest flat surfaces are planes and cylinders. A Moebius strip consist-
 ing of three planar parts and three cylindrical parts, smoothly joined together, was
 found by Sadowsky [1930, no. 1]. I had no access to his papers, and before I read
 about them in Wunderlich [1962], I found such a model myself. This model is best

 described in physical terms. Consider a long cylinder of radius r, and a long paper
 rectangle of width w. Imagine the rectangle lying on a table, and the cylinder lying

 on the rectangle at an angle, that is, so that the axis of the cylinder forms an acute

 angle of, say, a with the long sides of the rectangle. Clearly one can get hold of
 one end of the rectangle, and pulling it up, wrap the rectangle tightly half a turn
 around the cylinder, and then let it continue at an angle of Tr - a to the axis, on
 the plane that is parallel to the table, a distance of 2r above it.

 Each one of the long sides of the rectangle will become a space curve consisting
 of a piece of a helix, and two straight-line pieces, each tangent to the helical piece

 at one of its end. By rolling out the cylinder onto a plane, the helical piece would

 become the hypothenuse of a right triangle with one side of length Frr, and an
 angle of a facing it. Its length is therefore 7rr/sin a. Now project the picture down
 onto the table. Each of the two space curves becomes a pair of segments forming
 an angle of 7r - 2 a, whose missing tip is replaced by a sine curve. Note that the

 missing tip consists of two sides of an isosceles triangle with an angle of 1r - 2a
 facing a base of length 7rr cot a, and its length is 7rr/sin a, the same as the helical
 part of the space curve. Since the segment that was on the higher plane does not

 change its length when it is projected onto the table, and the other segment stays

 put, the whole space curve retains its length when it is first projected onto the
 table, and then its rounded tip is replaced by continuing the segments until they
 meet.

 There is a "physical" consequence of this fact: when a (long) rectangle is folded
 once on the table, a cylinder, say of radius r, can be inserted into the fold, so that
 the rectangle wraps tightly around the cylinder for half a turn, and then continues
 in the horizontal plane that lies 2r above the table, directly over its previous

 position on the table.
 A flat smooth Moebius strip will now be built from three of these configura-

 tions. Choose three angles a, ,3 and y, that sum to 7r; then wr - 2 a, wr - 2,X and
 ,r- 2y also add up to 7r. For the corresponding radii choose r, r and 2r
 respectively. Start with a rectangle lying on the table. Put a cylinder of radius r on
 it, so that its axis forms an angle of a with the long sides of the rectangle, and
 wrap the rectangle half a turn around it. The rectangle continues now on a plane
 that lies 2r above the table. Now repeat the procedure with the second cylinder,
 sufficiently far from the first one so as not to interfere with it (in "reality" a slab of
 thickness 2r will have to be inserted under the part of the rectangle that is r above
 the table, to keep it there). After this operation the rectangle continues on a plane
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 1990] THE DARK SIDE OF THE MOEBIUS STRIP 893

 4r above the table. In the third step, where a cylinder of double radius is used,
 wrap downwards, causing the strip to return to the plane of the table, where it can

 be made to meet the first part that never left the table.

 The surface that was constructed here is easily seen to have a continuously
 varying tangent plane: it is a smooth surface. Since each half-turn wrapping flips it
 around once, and it meets itself after three of them, it is nonorientable, and
 represents the Moebius strip. On the debit side, it is not analytic at the "seams"
 where cylinders meet planes. In fact, the second derivatives that are needed for
 defining the second-order Taylor series approximation are not defined at these
 points; still, the surface is "flat" in the extended sense: it is locally isometric to a
 piece of a plane.

 The construction can be modified so that higher derivatives will exist. All that is
 required, is that the circular cross-sections of the cylinders will be replaced by
 cross sections of the form

 y2n z2n

 + = 0, s2n r 2n=?

 where s is chosen so that the (generalized) helix will have the right length of
 ,,r/sin a, and the surface will have 2n - 1 derivatives. By using more complicated

 cross sections, derivatives of all orders may be made to exist, but this will also not
 yield analyticity; as long as there are planar portions of the model, it cannot be
 analytic.
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 3. Let us now have a closer look at the dimensions of the rectangle out of which
 the strip was made. The cylindrical parts of the surface will appear on the
 rectangle as three disjoint strips, two of width irr and one of width 2lr, that form,
 with the long sides of the rectangle, angles of alternating signs, and of magnitudes
 a, 8 and y, respectively. Let the width w of the rectangle be chosen as the unit of
 length. Clearly, the length of the rectangle must exceed the sum of the cotangents
 of a, /8 and y. The average of the angles is w/3, and for positive acute angles the
 function cotangent is convex. By the Jensen Inequality, the average of the cotan-
 gents is at least the cotangent of the average, or cot(7/3), which is 1/ L. The
 length of the rectangle therefore exceeds I.

 Conversely, starting with any rectangle whose length exceeds V/3 times its width,
 one can, for a = ,3 = y = w/3, and sufficiently small r, carry out the construction
 described above, and obtain a smooth flat Moebius strip. The question of how
 short a Moebius strip can be, is not completely solved by these considerations: for
 rectangles with length/width < r/ only this particular construction fails, and so a
 length to width ratio of more than I3 has been shown to suffice, but not to be
 necessary. In fact, in a certain sense there are arbitrarily short Moebius strips, if
 the assumption of a smooth embedding is relaxed, so as to admit "planar folded
 Moebius strips." These are again best described in physical terms. While the
 models that correspond to what can be made out of paper, without stretching and
 tearing, are flat, in the sense of preserving the lengths of curves, they do not have
 to be smooth, or even one-to-one. If the latter condition is violated by the surface
 cutting through itself, the model cannot represent a paper surface. Consider,
 however, a sheet of paper folded flat along a line. It is reasonably approximated by
 a mapping of a rectangle onto the plane, and this mapping is at some points
 two-to-one. The folded paper may then be bent, yielding a two-to-one mapping
 onto nonplanar surfaces. The extension to finitely many folds is obvious. Martin
 Gardener has constructed folded Moebius strips in which that side of the rectangle
 that gets identified with its opposite is arbitrarily long compared to the two other
 sides. The bound 3 is thus replaced by 0. After the description of Gardner's
 model, the bound r will make a come-back, in a slightly different role. Start with
 a rectangle of dimensions W and L. Pick a positive odd integer n, and divide the
 rectangle into n parallel strips of dimensions W/n by L. Folding along the dividing
 lines back and forth, accordion-fashion, an n-fold covered strip of length L and
 width W/n is obtained.

 No matter how large W is, compared to L, for sufficiently large n, this strip will
 be narrow enough to permit its being bent and glued into a Moebius strip. Note
 that the fact that n is odd p'ermits the different layers of the folded strip to be
 glued to each other individually, in a manner that is equivalent to the identification
 of sides required by the configuration of the Moebius strip.

 4. Compare Gardner's folded model with another folded model, namely, the
 limiting configuration obtained from the three-plane-three-cylinder model, when
 the parameter r approaches 0. The latter, that can be constructed by folding a
 rectangle three times, is, by definition, the limit of a family of smooth flat models.
 The value of a parameter like length/width for such a model is the limit of its
 values for the flat smooth models that approximate it. Inclusion of such folded
 models won't change the least upper bound of a parameter. This is not the case for
 Gardner's model: it cannot be approximated by flat smooth surfaces. More
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 generally: Any paper surface in the making of which a folding-line is bent or folded,
 is a finite distance away, in an appropriate sense of distance, from all smooth flat
 surfaces. This follows from the fact that every smooth flat surface is a ruled
 surface. For every point, one of the lines that pass through the point on the paper
 remains a straight line as the paper is bent to make the required surface. This
 condition is violated when the paper is folded, and then refolded, with the second
 fold cutting through the first one: let the acute angle between the two fold-lines be
 a. Then a lines of slope /3 through the point of intersection of the two folding-lines
 will be broken at an angle of 2 max(a, /3), which is at least twice the angle between
 the folding-lines. If, in making the surface, the folding line is bent, the straight
 lines through any of its points will also be bent by an angle bounded from below.
 Thus Gardner's model does not disprove the conjecture that the length of a smooth
 flat Moebius strip exceeds v' times its width. The model that Barr describes in
 Chapter 3 of his book [1964], where a paper square is folded along one diagonal,
 and then along the other, also does not imply the violation of this bound, since its
 making involves the folding of a fold. If there is a counterexample to the
 conjecture, it won't be found by examining flat folded models. Indeed, the length of
 a flat folded Moebius strip without refolded folds is at least v' times its width. The
 bound is attained by the configuration consisting of three equilateral triangles on top
 of each other, the first connected to the second along one side, the second to the third
 along another side, and the third to the first along the third side.

 This is proved by first eliminating all models in which the center-line of the
 rectangle becomes, after folding, a polygon of more than three sides. There remain
 only the models where it becomes a triangle, with the three fold-lines bisecting its
 three exterior angles. On the rectangle, the folding lines cut the center lines at

 angles a, -,l/ and y. The cotangents must add up at least to the length over the
 width, and the proof concludes like above. Note, however, that here the bound is
 attained, because there is no extra room needed for any cylinders.

 5. Three decades after the work of Sadowsky, the step from flat smooth models
 to flat analytic, and even algebraic models was accomplished by Wunderlich [1962].
 Chicone [1984], who was evidently not aware of Wunderlich's article, studied the
 problem, and came up with a family of flat analytic surfaces in 3-space, homeomor-
 phic to the Moebius strip, but he failed to check whether they contain parts
 isometric to a strip obtained from a rectangle. To understand what is missing in
 Chicone's model, consider the embedding of a cylindrical ("untwisted") band in
 the surface of a cone. It is easy to find a homeomorphic embedding, but it cannot
 be trimmed down to an isometric image of a cylindrical band, since there are no
 closed geodesics on a cone. Having seen Chicone's manuscript, but also unaware of
 the work of Wunderlich, I constructed a different flat algebraic model, also
 isometric to a rectangle [1988].

 Wunderlich's model and my own are both based on the same observation: the
 bisecting line of the rectangle that is parallel to the long sides, becomes a (closed)
 geodesic on the surface. If a curve is a geodesic on a flat smooth surface, and the
 curve has no straight parts, then the surface is the rectifying developable of the
 curve. This is a flat surface, which forms the envelope of all the rectifying planes of
 the curve. The normal to the surface at any point of the curve will be the principal
 normal to the curve at that point. Therefore, a simple, closed curve without
 straight parts, whose principal normal changes its direction by 180 degrees when
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 the curve is traversed once, will yield the required model: its rectifying developable
 will contain a band around the curve, isometric to a Moebius strip made from a
 rectangle; and if the band is narrow enough it will not intersect itself. A simple way
 to make sure that the principal normal will flip around, is to make the curve
 symmetric under a rotation by 1800 around an axis that meets the curve at two
 points, one where the principal normal is parallel to the axis, and one where it is
 perpendicular to it. The second point must be a point of zero curvature of the
 curve. Wunderlich chose a parametrization in which this point is approached when
 the parameter t of the curve approaches + oo. The coordinates of the curve are
 given in his model as rational functions (that is, quotients of polynomials) of the
 parameter. In my model, the point of zero curvature corresponds to t = 0, and the
 fact that the curve is closed is interpreted as the curve having a periodic
 parametrization. This suggested trying for a parametrization by trigonometric
 polynomials. The simplest curve that has the required properties was found to be

 x = sin t, y = (1 - cos t)3, z = sint(1 - cos t),

 which is indeed an algebraic curve; it is the intersection of the surfaces

 z3 =x3y, and 8y =x6 + 6X2y +y2.

 As was pointed out to me by Gregory Brumfiel, the Seidenberg-Tarski Theorem
 [1954] can be used to show that not only the curve, but also the strip obtained in
 this manner is part of an algebraic surface.

 6. Let us now take another step in the direction from the abstract to the real
 world, and include some physical properties of paper in our considerations. If the
 substance of paper is assumed to be elastic, with a finite value for the constant in
 Hook's law, it would be possible to stretch it. Paper that cannot be stretched, yet
 can be bent if a finite force is applied, is well approximated by an infinitely thin
 plate with an infinite Hook's constant, so that bending any piece of it into part of a
 cylinder of radius r requires an amount of energy proportional to the area of the
 piece divided by r2. Since every small part of a flat surface is locally approximable
 by a cylinder with radius equal to the finite one among the two radii of curvature
 (the other one must be infinite), the total energy expended in making the surface
 out of paper is the integral of r-2 over the surface. Left to itself, the paper will
 take on the shape of minimum energy among all shapes in 3-space that are
 compatible with the metric structure of the surface.

 As an example of this phenomenon, consider a cylindrical band, made out of a
 paper rectangle without twisting. The integral of 1/r over any closed geodesic on
 the band is forced to remaird 2wr. Under this constraint, the minimum of the
 integral of the square of 1/r is attained when r is constant, which holds when the
 surface is a circular cylinder. Indeed, this is the shape the surface takes on "in
 the real world," and if gently deformed, it returns to this shape. Paper Moebius
 strips also appear to have a clear stable shape, if the paper is not too soft, and the
 width of the strip is not too small. Sadowsky [1930, 5] approached the search for a
 analytical Moebius strip from this angle. He did not find an explicit form for the
 shape of minimum energy, but he simplified the expression for the energy: he
 reduced it to a one-dimensional integral, with respect to arc length s along the
 curve whose rectifying developable is the strip. The integrand can be expressed in
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 terms of the curvature k(s) of the curve, its torsion r(s) and the function

 1

 +(s)= dk dr
 z-- k-
 ds ds

 as follows:

 fk + r 2) 2i/ilog 2k 2ii+ Wd
 J( k2 2)2 1 2k 2q-w ds,

 where w is the width of the strip, and s ranges over its length.
 Neither Sadowsky nor Wunderlich solved this variational problem-in all likeli-

 hood it is still open. On the basis of observation of physical models, Wunderlich

 states that "the shape appears to depend only slightly on the width w." This may
 be true for small values of w; in fact, Sadowsky showed that in the limit, for the
 "infinitely narrow band," the energy is approximately proportional to the integral

 of (k2 + 72)2/k2, and it is plausible that the solution to the minimum problem for
 finite w approaches the (also unknown) solution of this simpler problem when w
 goes to zero. Note, however, that for a fixed curve, when w grows, and approaches
 the minimum of 2k2i2i along the curve, the energy becomes infinite. The depen-
 dence of the solution on w can, therefore, be expected to become much more
 pronounced as w becomes larger. My own observations of physical Moebius strips

 confirm this, and furthermore, lead to the following conjecture:

 For fixed length L, and width w less than L/ v's, there exists a unique minimum-
 energy smooth flat Moebius strip in 3-space. As w approaches L/ v' from below, the
 strip approaches the configuration of three equilateral triangles on top of each other,
 each two connected along one side. If w exceeds L/ v's, there is no smooth Moebius
 strip in 3-space, isometric to the corresponding rectangle.

 Acknowledgements I would like to thank Gil Bor, who made me aware of the work of Wunderlich,

 and through him, of Sadowsky; Gregory Brumfiel, who showed how the Seidenberg-Tarski Theorem

 can be used to prove that my model is part of an algebraic surface; Lester Dubins, who showed me

 Barr's book, where Gardner's construction is also described, and Moe Hirsch, who gave me Chicone's

 Manuscript.

 This work was done while visiting Stanford University and the University of California in Berkeley.
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