12.1

Three-Dimensional Coordinate Systems

FIGURE 12.1 The Cartesian coordinate system is right-handed.

FIGURE 12.2 The planes $x=0, y=0$, and $z=0$ divide space into eight octants.

FIGURE 12.3 The planes $x=2, y=3$, and $z=5$ determine three lines through the point $(2,3,5)$.

FIGURE 12.4 The circle $x^{2}+y^{2}=4$ in the plane $z=3$ (Example 2).

The Distance Between $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

FIGURE 12.5 We find the distance between P_{1} and P_{2} by applying the Pythagorean theorem to the right triangles $P_{1} A B$ and $P_{1} B P_{2}$.

EXAMPLE 3 The distance between $P_{1}(2,1,5)$ and $P_{2}(-2,3,0)$ is

$$
\begin{aligned}
\left|P_{1} P_{2}\right| & =\sqrt{(-2-2)^{2}+(3-1)^{2}+(0-5)^{2}} \\
& =\sqrt{16+4+25} \\
& =\sqrt{45} \approx 6.708 .
\end{aligned}
$$

FIGURE 12.6 The sphere of radius a centered at the point $\left(x_{0}, y_{0}, z_{0}\right)$.

EXAMPLE 4 Find the center and radius of the sphere

$$
x^{2}+y^{2}+z^{2}+3 x-4 z+1=0 .
$$

Solution We find the center and radius of a sphere the way we find the center and radius of a circle: Complete the squares on the x-, y-, and z-terms as necessary and write each quadratic as a squared linear expression. Then, from the equation in standard form, read off the center and radius. For the sphere here, we have

$$
\begin{aligned}
x^{2}+y^{2}+z^{2}+3 x-4 z+1 & =0 \\
\left(x^{2}+3 x\right)+y^{2}+\left(z^{2}-4 z\right) & =-1 \\
\left(x^{2}+3 x+\left(\frac{3}{2}\right)^{2}\right)+y^{2}+\left(z^{2}-4 z+\left(\frac{-4}{2}\right)^{2}\right) & =-1+\left(\frac{3}{2}\right)^{2}+\left(\frac{-4}{2}\right)^{2} \\
\left(x+\frac{3}{2}\right)^{2}+y^{2}+(z-2)^{2}=-1+\frac{9}{4}+4 & =\frac{21}{4} .
\end{aligned}
$$

From this standard form, we read that $x_{0}=-3 / 2, y_{0}=0, z_{0}=2$, and $a=\sqrt{21} / 2$. The center is $(-3 / 2,0,2)$. The radius is $\sqrt{21} / 2$.

