MATH 644, FALL 2011, HOMEWORK 8

Exercise 1. (The adjoint of $S(t)$) [5 points]
Let $S(t)$ denote the linear Schrödinger propagator defined in class. Show that:

$$
(S(t))^{*}=S(-t)
$$

where .* denotes the adjoint with respect to the $L^{2}\left(\mathbb{R}^{n}\right)$ inner product.
Exercise 2. (Solving the wave equation by using the Fourier transform) [10 points]
a) Suppose that $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Consider the initial value problem:

$$
\left\{\begin{array}{l}
\left(\frac{\partial^{2}}{\partial t^{2}}-\Delta_{x}\right) u=0 \text { on } \mathbb{R}_{x}^{n} \times \mathbb{R}_{t} \tag{1}\\
u=f, u_{t}=g \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{array}\right.
$$

Find $\widehat{u}(\xi, t)$, where $\widehat{\cdot}$ denotes the Fourier transform in the x variable.
b) Use the Fourier transform and part a) to show that:

$$
\|\nabla u(x, t)\|_{L^{2}\left(\mathbb{R}_{x}^{n}\right)}^{2}+\left\|\frac{\partial}{\partial t} u(x, t)\right\|_{L^{2}\left(\mathbb{R}_{x}^{n}\right)}^{2}=\|\nabla f(x)\|_{L^{2}\left(\mathbb{R}_{x}^{n}\right)}^{2}+\|g(x)\|_{L^{2}\left(\mathbb{R}_{x}^{n}\right)}^{2}
$$

This method gives us an alternative derivation of the conservation of energy for the wave equation.
Exercise 3. (Localization of functions in the frequency space) [15 points]
a) Given $N>1$, and $\psi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ which is radial and satisfies:

$$
\left\{\begin{array}{l}
\psi=1 \text { on } \frac{3}{4} \leq|\xi| \leq \frac{5}{4} \tag{2}\\
\psi=0 \text { on }|\xi| \leq \frac{1}{2} \text { and on }|\xi| \geq 2
\end{array}\right.
$$

We note that ψ defined in this way is a smooth approximation of the characteristic function of the annulus $|\xi| \sim 1$. For the ψ defined in (2), we define an operator P_{N} on $L^{2}\left(\mathbb{R}^{d}\right)$ by:

$$
\left(P_{N} f\right)^{\wedge}(\xi):=\psi\left(\frac{\xi}{N}\right) \widehat{f}(\xi)
$$

a) Explain why it is clear by construction that:

$$
\left\|P_{N} f\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}
$$

b) Express P_{N} as a convolution operator, i.e. find K_{N} such that:

$$
P_{N} f=K_{N} * f
$$

c) Using part b), prove that for $1 \leq p \leq \infty$, one has:

$$
\left\|P_{N} f\right\|_{L^{p}\left(\mathbb{R}^{d}\right)} \leq C\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

(Strictly speaking, we are defining K_{N} on $L^{2} \cap L^{p}$ and we are extending the definition by density.) [HINT: Use Young's Inequality.]
d) Show more generally that for all $1 \leq p \leq q \leq \infty$, one has:

$$
\left\|P_{N} f\right\|_{L^{q}\left(\mathbb{R}^{d}\right)} \leq C N^{\frac{d}{p}-\frac{d}{q}}\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

e) Show that the result in d) can be improved to

$$
\left\|P_{N} f\right\|_{L^{q}\left(\mathbb{R}^{d}\right)} \leq C N^{\frac{d}{p}-\frac{d}{q}}\left\|P_{N} f\right\|_{L^{p}\left(\mathbb{R}^{d}\right)} . \quad \text { (See next page) }
$$

[HINT: Write $K_{N} f=\tilde{K}_{N} K_{N} f$ where \tilde{K}_{N} is an operator of a similar type as K_{N} which localizes to a slightly larger region in the frequency space.]

This homework assignment is due in class on Friday, December 9. Good Luck!

