MATH 644, FALL 2011, HOMEWORK 7

Exercise 1. (An interpolation inequality) [5 points]
Suppose that $1 \leq p, q \leq \infty$ and suppose that $\theta \in[0,1]$ is given. Define r by:

$$
\frac{1}{r}:=\frac{\theta}{p}+\frac{1-\theta}{q}
$$

Show that:

$$
\|f\|_{L^{r}} \leq\|f\|_{L^{p}}^{\theta}\|f\|_{L^{q}}^{1-\theta} .
$$

Exercise 2. (More on the Hausdorff-Young Inequality) [15 points]
a) Suppose that $1 \leq p, q \leq \infty$ are such that there exists $C>0$ with the property that:

$$
\|\widehat{f}\|_{L_{x}^{q}} \leq C\|f\|_{L_{x}^{p}}
$$

for all $f \in L^{p}\left(\mathbb{R}^{n}\right)$. Show that $\frac{1}{p}+\frac{1}{q}=1$. (HINT: Use scaling).
b) Suppose that $1 \leq p \leq \infty$ is such that there exists $C>0$ with the property that:

$$
\|\widehat{f}\|_{L_{x}^{p^{\prime}}} \leq C\|f\|_{L_{x}^{p}}
$$

for all $f \in L^{p}\left(\mathbb{R}^{n}\right)$. Here p^{\prime} denotes the Hölder conjugate of p, i.e. $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. Show that necessarily $1 \leq p \leq 2$.

HINT: This is a subtle construction. The idea is that, given $N \in \mathbb{N}$, one defines the function: $f_{N}(x):=\sum_{n=1}^{N} e^{2 \pi i x \cdot(n v)} g(x-n v)$ for g a Gaussian and $v \in \mathbb{R}^{n}$, a unit vector.
i) How is the Fourier transform of f_{N} related to f_{N} ?
ii) What is a good lower bound for $\left\|f_{N}\right\|_{L^{p}}$? (It is good to look at parts of f_{N} near xv.)
iii) What is an upper bound for $\left\|f_{N}\right\|_{L^{1}}$ and for $\left\|f_{N}\right\|_{L^{\infty}}$?
iv) Use iii) and Exercise 1 to deduce an upper bound for $\left\|f_{N}\right\|_{L^{p}}$.
v) Is it possible to deduce that $\left\|f_{N}\right\|_{L^{p}} \sim N^{r}$ for some power r? How about $\left\|\widehat{f_{N}}\right\|_{L^{p^{\prime}}}$?

Exercise 3. (Generalized Young's Inequality) [5 points]
Suppose that $1 \leq p, q, r \leq \infty$ are such that $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}+1$. By using the Riesz-Thorin Interpolation Theorem, show that:

$$
\|f * g\|_{L^{r}} \leq\|f\|_{L^{p}} \cdot\|g\|_{L^{q}} .
$$

Exercise 4. (A refinement of Young's inequality when $r=\infty$) [5 points]
Suppose that $1<p<\infty$ and suppose that $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $g \in L^{p^{\prime}}\left(\mathbb{R}^{n}\right)$. Show that $f * g$ is uniformly continuous and that it decays to zero at infinity.

HINT: Recall that $\lim _{t \rightarrow 0}\|f(\cdot+t)-f\|_{L^{p}}=0$.
This homework assignment is due in class on Wednesday, November 30. Good Luck!

