MATH 644, FALL 2011, HOMEWORK 5

Exercise 1. (An alternative derivation of the heat kernel in one dimension) [Evans, Problem 11 in Chapter 2; 5 points]

Assume $n=1$ and $u=v\left(\frac{x^{2}}{t}\right)$.
a) Show that $u_{t}=u_{x x}$ if and only if:

$$
\begin{equation*}
4 z v^{\prime \prime}(z)+(2+z) v^{\prime}(z)=0, \text { for } z>0 \tag{1}
\end{equation*}
$$

b) Show that the general solution to (1) is given by:

$$
v(z)=c \int_{0}^{z} e^{-\frac{s}{4}} s^{-\frac{1}{2}} d s+d
$$

c) Differentiate $v\left(\frac{x^{2}}{t}\right)$ with respect to x and select the constant c properly in order to obtain the fundamental solution Φ for $n=1$.
Exercise 2. (An explicit solution to a heat-type equation) [Evans, Problem 12 in Chapter 2; 5 points]

Find an explicit solution (in terms of Φ) of:

$$
\left\{\begin{array}{l}
u_{t}-\Delta u+c u=f \text { on } \mathbb{R}^{n} \times(0,+\infty) \tag{2}\\
u=g \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{array}\right.
$$

Here, $f \in C\left(\mathbb{R}^{n} \times(0,+\infty)\right)$ and $g \in C\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$.
Exercise 3. (A maximum principle and a method for deducing decay estimates) [Taken in part from Problem 14 in Chapter 2 of Evans; 10 points]
a) We say that $v \in C_{1}^{2}\left(U_{T}\right)$ is a subsolution of the heat equation if:

$$
v_{t}-\Delta v \leq 0 \text { on } U_{T}
$$

Explain briefly how the proof of the mean value formula for the heat equation can be modified to show that, for a subsolution v, one has:

$$
v(x, t) \leq \frac{1}{C_{n} r^{n}} \iint_{E(x, t ; r)} v(y, s) \frac{|x-y|^{2}}{(t-s)^{2}} d y d s
$$

for all $E(x, t ; r) \subseteq U_{T}$. (with notation as in the proof of the mean value theorem) Deduce that:

$$
\max _{\overline{U_{T}}} v=\max _{\Gamma_{T}} v
$$

b) Suppose that $U=(0,1)$ and $u \in C_{1}^{2}\left(U_{T}\right)$ solves:

$$
\left\{\begin{array}{l}
u_{t}(x, t)-u_{x x}(x, t)=0 \text { for }(x, t) \in(0,1) \times(0,+\infty) \tag{3}\\
u(x, 0)=x(1-x) \text { for } x \in[0,1] \\
u(0, t)=u(1, t)=0 \text { for } t>0
\end{array}\right.
$$

Show that $u \geq 0$.
c) For u as in part b), show that there exist constants $\alpha, \beta>0$ such that:

$$
u(x, t) \leq \alpha x(1-x) e^{-\beta t}
$$

Deduce that $u(x, t) \rightarrow 0$ as $t \rightarrow+\infty$.

This homework assignment is due in class on Monday, October 24. Good Luck!

