MATH 644, FALL 2011, HOMEWORK 2

Exercise 1. (A mean value formula for the Poisson equation on $B(0, r)$) [Evans, Problem 3 in Chapter 2] Suppose that $r>0$, and that $n \geq 3$. Consider $B(0, r) \subseteq \mathbb{R}^{n}$ and

$$
u \in C^{2}(B(0, r)) \cap C(\overline{B(0, r)})
$$

such that:

$$
\left\{\begin{array}{l}
-\Delta u=f, \text { on } B(0, r) \tag{1}\\
u=g, \text { on } \partial B(0, r)
\end{array}\right.
$$

Modify the proof of the mean value formula for harmonic functions to show that:

$$
u(0)=\underset{\partial B(0, r)}{f^{\prime}} g(y) d S(y)+\frac{1}{n(n-2) \alpha(n)} \int_{B(0, r)}\left(\frac{1}{|x|^{n-2}}-\frac{1}{r^{n-2}}\right) f(x) d x
$$

Exercise 2. (A direct proof of the maximum principle) [Evans, Problem 4 in Chapter 2] Suppose that $U \subseteq \mathbb{R}^{n}$ is open and bounded and suppose that $u \in C^{2}(U) \cap C(\bar{U})$ is harmonic on U. By considering the functions $u_{\epsilon}:=u+\epsilon|x|^{2}$, for $\epsilon>0$, show that:

$$
\max _{\bar{U}} u=\max _{\partial U} u
$$

Exercise 3. (Subharmonic functions) [Evans, Problem 5 in Chapter 2] We say that $v \in C^{2}(\bar{U})$ is subharmonic if:

$$
-\Delta v \leq 0
$$

(1) Prove that for v subharmonic, one has:

$$
v(x) \leq f_{B(x, r)} v(y) d y
$$

for all $B(x, r) \subseteq U$.
(2) Show that $\max _{\bar{U}} v=\max _{\partial U} v$.
(3) Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be smooth and convex. Assume that u is harmonic and take $v:=\phi(u)$. Prove that u is subharmonic.
(4) Prove that $v:=|\nabla u|^{2}$ is subharmonic whenever u is harmonic.

Exercise 4. (A specific class of harmonic functions) Find all polynomials $P(x, y)=\sum_{k=0}^{n} c_{k} x^{k} y^{n-k}$ in x, y which are homogeneous of degree n and which are harmonic. Here, $c_{k} \in \mathbb{C}$.

Each problem is worth 5 points. This assignment is due in class on Wednesday, September 28. Good Luck!

