MATH 644, FALL 2011, HOMEWORK 1

Exercise 1. (Duhamel's principle) Consider the differential operator $L=\sum_{\alpha} c_{\alpha} D_{x}^{\alpha}$ on \mathbb{R}^{n}. Here, $c_{\alpha} \in \mathbb{R}$ are constants. Suppose that the solution to:

$$
\left\{\begin{array}{l}
\partial_{t} u+L(u)=0, \text { on } \mathbb{R}_{x}^{n} \times \mathbb{R}_{t} \tag{1}\\
\left.u\right|_{t=0}=\Phi, \text { on } \mathbb{R}_{x}^{n}
\end{array}\right.
$$

is given by $u(x, t)=S(t) \Phi(x)$.
Show that the solution to:

$$
\left\{\begin{array}{l}
\partial_{t} u+L(u)=f(x, t), \text { on } \mathbb{R}_{x}^{n} \times \mathbb{R}_{t} \tag{2}\\
\left.u\right|_{t=0}=g(x), \text { on } \mathbb{R}_{x}^{n}
\end{array}\right.
$$

is given by:

$$
u(x, t)=S(t) g(x)+\int_{0}^{t} S(t-\tau) f(x, \tau) d \tau
$$

This is the general version of Duhamel's principle mentioned in class. For the purposes of this exercise, let us assume that Φ, f, g are smooth and that we can differentiate under the integral sign without additional justification. (HINT: Consider first the case when $g=0$. Be careful when using the Chain rule.)

Exercise 2. (Evans, Problem 1 in chapter 2) Write down an explicit formula for a function u which solves the initial-value problem:

$$
\left\{\begin{array}{l}
\partial_{t} u+b \cdot \nabla u=0, \text { on } \mathbb{R}_{x}^{n} \times(0,+\infty)_{t} \tag{3}\\
\left.u\right|_{t=0}=g(x), \text { on } \mathbb{R}_{x}^{n}
\end{array}\right.
$$

Here, $c \in \mathbb{R}$ and $b \in \mathbb{R}^{n}$ are constants.
Exercise 3. (Evans, Problem 2 in Chapter 2) Prove that Laplace's equation $\Delta u=0$ is rotationally invariant, i.e. if $\mathcal{O} \in O(n)$ is an orthogonal $n \times n$ matrix, and if $v=u \circ \mathcal{O}$, then $\Delta v=0$. We recall that this was a useful insight when we were looking for a fundamental solution of the Laplace operator on \mathbb{R}^{n}.
Exercise 4. (A vanishing theorem) Suppose that $u \in L^{2}\left(\mathbb{R}^{n}\right) \cap C^{2}\left(\mathbb{R}^{n}\right)$ solves $\Delta u=0$. Show that u is identically equal to zero. (HINT: Use the Mean value property).

Each problem is worth 5 points. This assignment is due in class on Wednesday, September 21. Good Luck!

