PUTNAM SIMULATION EXAM, NOVEMBER 17, 2012.

Exercise 1. We start from a list of 2n real numbers $x_1, \ldots, x_n, y_1, \ldots, y_n$ and we want to form the scalar product of (x_1, \ldots, x_n) and (y_1, \ldots, y_n) , i.e.

 $x_1 \cdot y_1 + \cdots + x_n \cdot y_n$.

Each operation of addition and multiplication counts as a single operation. Show that we always need to perform 2n - 1 operations in order to calculate the inner product (no matter in what order we perform these operations).

Exercise 2. Given $n \in \mathbb{N}$, we can write $(1+\sqrt{2})^n$ as $x_n+y_n\sqrt{2}$ for uniquely determined $x_n, y_n \in \mathbb{N}$. For x_n and y_n defined as above, compute $x_n^2 - 2y_n^2$ in terms of n.

Exercise 3. Given $a_1, \ldots, a_n, b_1, \ldots, b_n > 0$, show that:

$$\sqrt[n]{a_1\cdots a_n} + \sqrt[n]{b_1\cdots b_n} \le \sqrt[n]{(a_1+b_1)\cdots (a_n+b_n)}$$

When does equality hold?

Exercise 4. Let $\mathcal{A} := \{n \in \mathbb{N}; n \text{ doesn't contain the digit } 9 \text{ in its decimal expansion}\}$. Show that:

$$\sum_{n \in \mathcal{A}} \frac{1}{n} < +\infty.$$

Exercise 5. Suppose that $f : [0,1] \rightarrow [0,1]$ is such that:

1) For all $x, y \in [0, 1], |f(x) - f(y)| \le \frac{|f(x) - x| + |f(y) - y|}{2}$.

2) There exist $a, b \in [0, 1]$ such that f(a) = 1, f(b) = 0.

Under these assumptions:

- i) Show that f(0) = 1 and f(1) = 0.
- ii) Suppose that there exists $x_0 \in [0,1]$ such that $f(x_0) = x_0$. Show that this implies that necessarily $x_0 = \frac{1}{2}$.
- iii) Show that $f(\frac{1}{2}) = \frac{1}{2}$, and hence conclude that f has a unique fixed point.

Exercise 6. Suppose that $a_n > a_{n-1} > \cdots > a_1 > a_0 > 0$ are given. Show that the polynomial $P(z) := a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$ doesn't have any complex roots which satisfy |z| > 1.