PUTNAM SIMULATION EXAM, NOVEMBER 17, 2012.

Exercise 1. We start from a list of $2 n$ real numbers $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ and we want to form the scalar product of $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$, i.e.

$$
x_{1} \cdot y_{1}+\cdots x_{n} \cdot y_{n}
$$

Each operation of addition and multiplication counts as a single operation. Show that we always need to perform $2 n-1$ operations in order to calculate the inner product (no matter in what order we perform these operations).
Exercise 2. Given $n \in \mathbb{N}$, we can write $(1+\sqrt{2})^{n}$ as $x_{n}+y_{n} \sqrt{2}$ for uniquely determined $x_{n}, y_{n} \in \mathbb{N}$. For x_{n} and y_{n} defined as above, compute $x_{n}^{2}-2 y_{n}^{2}$ in terms of n.
Exercise 3. Given $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}>0$, show that:

$$
\sqrt[n]{a_{1} \cdots a_{n}}+\sqrt[n]{b_{1} \cdots b_{n}} \leq \sqrt[n]{\left(a_{1}+b_{1}\right) \cdots\left(a_{n}+b_{n}\right)}
$$

When does equality hold?
Exercise 4. Let $\mathcal{A}:=\{n \in \mathbb{N} ; n$ doesn't contain the digit 9 in its decimal expansion $\}$. Show that:

$$
\sum_{n \in \mathcal{A}} \frac{1}{n}<+\infty
$$

Exercise 5. Suppose that $f:[0,1] \rightarrow[0,1]$ is such that:

1) For all $x, y \in[0,1],|f(x)-f(y)| \leq \frac{|f(x)-x|+|f(y)-y|}{2}$.
2) There exist $a, b \in[0,1]$ such that $f(a)=1, f(b)=0$.

Under these assumptions:
i) Show that $f(0)=1$ and $f(1)=0$.
ii) Suppose that there exists $x_{0} \in[0,1]$ such that $f\left(x_{0}\right)=x_{0}$. Show that this implies that necessarily $x_{0}=\frac{1}{2}$.
iii) Show that $f\left(\frac{1}{2}\right)=\frac{1}{2}$, and hence conclude that f has a unique fixed point.

Exercise 6. Suppose that $a_{n}>a_{n-1}>\cdots>a_{1}>a_{0}>0$ are given. Show that the polynomial $P(z):=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots a_{1} z+a_{0}$ doesn't have any complex roots which satisfy $|z|>1$.

