
SOLUTIONS TO PRACTICE PUTNAM EXAM, OCTOBER 7, 2013.

Each problem is worth 10 points.

Exercise 1. a) Given a positive integer k ≥ 3, find coefficients a, b, c ∈ R, independent of k, such
that:

k2 − 2

k!
=

a

k!
+

b

(k − 1)!
+

c

(k − 2)!
.

b) Show that, for all positive integers n ≥ 3:

3− 2

(n− 1)!
<

22 − 2

2!
+

32 − 2

3!
+ · · ·+ n2 − 2

n!
< 3.

c) Calculate:

lim
n→∞

(22 − 2

2!
+

32 − 2

3!
+ · · ·+ n2 − 2

n!

)
.

Solution:

a) Let k be a positive integer such that k ≥ 3. We want to find coefficients a, b, c ∈ R such that:

k2 − 2

k!
=

a

k!
+

b

(k − 1)!
+

c

(k − 2)!
.

Multiplying through by k!, this equation becomes:

a + b · k + c · (k2 − k) = k2 − 2.

In particular:

k2 · c + k · (b− c) + a = k2 − 2.

It follows that this identity will be satisfied for all k ≥ 3 provided that:

c = 1, b− c = 0, a = −2

and hence:

a = −2, b = 1, c = 1.

We note that the a, b, c are independent of k. It follows that we can write:

k2 − 2

k!
= − 2

k!
+

1

(k − 1)!
+

1

(k − 2)!
.

b) Let n be a positive integer such that n ≥ 3.
From part a), it follows that:

I :=
22 − 2

2!
+

32 − 2

3!
+ · · ·+ n2 − 2

n!
=

= 1 +
(
− 2

3!
+

1

2!
+

1

1!

)
+
(
− 2

4!
+

1

3!
+

1

2!

)
+
(
− 2

5!
+

1

4!
+

1

3!

)
+ · · ·+

+ · · ·+
(
− 2

(n− 2)!
+

1

(n− 3)!
+

1

(n− 4)!

)
+
(
− 2

(n− 1)!
+

1

(n− 2)!
+

1

(n− 3)!

)
+
(
− 2

n!
+

1

(n− 1)!
+

1

(n− 2)!

)
.

We note that this sum equals:

3− 1

(n− 1)!
− 2

n!
= 3− n + 2

n!
.
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It immediately follows that I < 3. We now need to check that I > 3− 2
(n−1)! . In order to do this, we

need to show that 2
(n−1)! >

n+2
n! whenever n ≥ 3. The latter inequality is equivalent to 2n > n + 2,

which in turn is equivalent to n > 2. This inequality is true for n ≥ 3. It follows that:

I > 3− 2

(n− 1)!
,

whenever n ≥ 3.

c) From part b), it follows that:

lim
n→∞

(22 − 2

2!
+

32 − 2

3!
+ · · ·+ n2 − 2

n!

)
= 3. �

Exercise 2. Let (xn)n≥0 be a sequence of non-zero real numbers such that, for all positive natural
numbers n, the following identity holds:

x2
n − xn−1 · xn+1 = 1.

Show that there exists a real number a such that, for all positive natural numbers n, the following
identity holds:

xn+1 = a · xn − xn−1.

Solution:

Suppose that n ∈ N. We then observe that:{
x2
n − xn−1 · xn+1 = 1

x2
n+1 − xn · xn+2 = 1.

If we subtract these two equations, we obtain:

x2
n + xn · xn+2 = x2

n+1 + xn−1 · xn+1.

In particular:

xn · (xn + xn+2) = xn+1 · (xn−1 + xn+1),

which implies:

(1)
xn+2 + xn

xn+1
=

xn+1 + xn−1

xn
.

We can iteratively apply the identity in (1) in order to deduce that for all positive natural numbers
n:

xn+1 + xn−1

xn
=

x2 + x0

x1
.

In particular, if we define a := x2+x0

x1
. Then a is a real number and it is the case that for all positive

natural numbers n:

xn+1 = a · xn − xn−1. �

Exercise 3. For non-negative integers n and k, define Q(n, k) to be the coefficient of xk in the
polynomial (1 + x + x2 + x3)n. Show that:

Q(n, k) =

k∑
j=0

(
n

j

)
·
(

n

k − 2j

)
.

Solution: Given a polynomial p(x) and a non-negative integer k, we denote by [xk] p(x) the
coefficient of xk in p(x). With this notation, we observe that:

Q(n, k) = [xk] (1 + x + x2 + x3)n = [xk]
(

(1 + x) · (1 + x2)
)n

= [xk]
(

(1 + x)n · (1 + x2)n
)
.
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We note that this expression equals:

k∑
j=0

(
[x2j ] (1 + x2)n

)
·
(

[xk−2j ] (1 + x)n
)
.

By the Binomial Theorem, this equals:

k∑
j=0

(
n

j

)
·
(

n

k − 2j

)
,

as was claimed. �

Exercise 4. Suppose that n is a positive integer. Show that:(2n− 1

e

) 2n−1
2

< 1 · 3 · 5 · · · · · (2n− 1) <
(2n + 1

e

) 2n+1
2

.

Solution: We will first prove:

(2)
(2n− 1

e

) 2n−1
2

< 1 · 3 · 5 · · · · · (2n− 1).

We take natural logarithms of both sides of (2) and we see that this is equivalent to showing:

2n− 1

2
·
(

ln(2n− 1)− 1
)
< ln 1 + ln 3 + ln 5 + · · ·+ ln(2n− 1).

In other words, we need to show:

(3) (2n− 1) ·
(

ln(2n− 1)− 1
)
< 2 ln 3 + 2 ln 5 + · · ·+ 2 ln(2n− 1).

We will show (3) by appealing to upper Riemann sums for the natural logarithm function lnx,
which is defined for positive x. In particular, we note that:

ln′′(x) = − 1

x2
< 0.

Hence ln is strictly concave. Moreover, we know that:

(4)

∫ b

a

ln(y) dy = (a ln a− a)− (b ln b− b).

We note that the upper Riemann sum corresponding to the integral of ln on the interval [1, 2n− 1],
with the partition points 1, 3, 5, . . . , 2n− 1 equals:

2 ln 3 + 2 ln 5 + · · ·+ 2 ln(2n− 1).

By the strict concavity of ln, this expression must be

>

∫ 2n+1

1

ln(y) dy,

which by (4) equals:
(2n− 1) ln(2n− 1)− (2n− 1) + 1.

In particular:

2 ln 3 + 2 ln 5 + · · ·+ 2 ln(2n− 1) > (2n− 1) ln(2n− 1)− (2n− 1) = (2n− 1) ·
(

ln(2n− 1)− 1
)

and the inequality (3) now follows.
By using similar arguments, we will now prove:

(5) 1 · 3 · 5 · · · · · (2n− 1) <
(2n + 1

e

) 2n+1
1

.

We again take natural logarithms and we deduce that (5) is equivalent to:

(6) 2 ln 3 + 2 ln 5 + · · ·+ 2 ln(2n− 1) < (2n + 1) ·
(

ln(2n + 1)− 1
)
.
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We now observe that the left-hand side equals to the lower Riemann sum corresponding to the
integral of ln on the interval [3, 2n + 1], with the partition points 3, 5, 7, · · · , 2n + 1. By strict

concavity, this expression is strictly less than
∫ 2n+1

3
ln(y) dy. Furthermore, we observe that by (4):∫ 2n+1

3

ln(y) dy = (2n+ 1) ln(2n+ 1)− (2n+ 1)− 3 ln 3 + 3 < (2n+ 1) ln(2n+ 1)− (2n+ 1)− 3 + 3 =

= (2n + 1) ln(2n + 1)− (2n + 1) = (2n + 1) ·
(

ln(2n + 1)− 1
)
.

The inequality (6) now follows. �


