SOLUTIONS TO PRACTICE PUTNAM EXAM, OCTOBER 7, 2013.

Each problem is worth 10 points.
Exercise 1. a) Given a positive integer $k \geq 3$, find coefficients $a, b, c \in \mathbb{R}$, independent of k, such that:

$$
\frac{k^{2}-2}{k!}=\frac{a}{k!}+\frac{b}{(k-1)!}+\frac{c}{(k-2)!} .
$$

b) Show that, for all positive integers $n \geq 3$:

$$
3-\frac{2}{(n-1)!}<\frac{2^{2}-2}{2!}+\frac{3^{2}-2}{3!}+\cdots+\frac{n^{2}-2}{n!}<3
$$

c) Calculate:

$$
\lim _{n \rightarrow \infty}\left(\frac{2^{2}-2}{2!}+\frac{3^{2}-2}{3!}+\cdots+\frac{n^{2}-2}{n!}\right)
$$

Solution:

a) Let k be a positive integer such that $k \geq 3$. We want to find coefficients $a, b, c \in \mathbb{R}$ such that:

$$
\frac{k^{2}-2}{k!}=\frac{a}{k!}+\frac{b}{(k-1)!}+\frac{c}{(k-2)!} .
$$

Multiplying through by k !, this equation becomes:

$$
a+b \cdot k+c \cdot\left(k^{2}-k\right)=k^{2}-2
$$

In particular:

$$
k^{2} \cdot c+k \cdot(b-c)+a=k^{2}-2
$$

It follows that this identity will be satisfied for all $k \geq 3$ provided that:

$$
c=1, b-c=0, a=-2
$$

and hence:

$$
a=-2, b=1, c=1
$$

We note that the a, b, c are independent of k. It follows that we can write:

$$
\frac{k^{2}-2}{k!}=-\frac{2}{k!}+\frac{1}{(k-1)!}+\frac{1}{(k-2)!} .
$$

b) Let n be a positive integer such that $n \geq 3$.

From part a), it follows that:

$$
\begin{gathered}
I:=\frac{2^{2}-2}{2!}+\frac{3^{2}-2}{3!}+\cdots+\frac{n^{2}-2}{n!}= \\
=1+\left(-\frac{2}{3!}+\frac{1}{2!}+\frac{1}{1!}\right)+\left(-\frac{2}{4!}+\frac{1}{3!}+\frac{1}{2!}\right)+\left(-\frac{2}{5!}+\frac{1}{4!}+\frac{1}{3!}\right)+\cdots+ \\
+\cdots+\left(-\frac{2}{(n-2)!}+\frac{1}{(n-3)!}+\frac{1}{(n-4)!}\right)+\left(-\frac{2}{(n-1)!}+\frac{1}{(n-2)!}+\frac{1}{(n-3)!}\right)+\left(-\frac{2}{n!}+\frac{1}{(n-1)!}+\frac{1}{(n-2)!}\right) .
\end{gathered}
$$

We note that this sum equals:

$$
3-\frac{1}{(n-1)!}-\frac{2}{n!}=3-\frac{n+2}{n!}
$$

It immediately follows that $I<3$. We now need to check that $I>3-\frac{2}{(n-1)!}$. In order to do this, we need to show that $\frac{2}{(n-1)!}>\frac{n+2}{n!}$ whenever $n \geq 3$. The latter inequality is equivalent to $2 n>n+2$, which in turn is equivalent to $n>2$. This inequality is true for $n \geq 3$. It follows that:

$$
I>3-\frac{2}{(n-1)!},
$$

whenever $n \geq 3$.
c) From part b), it follows that:

$$
\lim _{n \rightarrow \infty}\left(\frac{2^{2}-2}{2!}+\frac{3^{2}-2}{3!}+\cdots+\frac{n^{2}-2}{n!}\right)=3
$$

Exercise 2. Let $\left(x_{n}\right)_{n \geq 0}$ be a sequence of non-zero real numbers such that, for all positive natural numbers n, the following identity holds:

$$
x_{n}^{2}-x_{n-1} \cdot x_{n+1}=1
$$

Show that there exists a real number a such that, for all positive natural numbers n, the following identity holds:

$$
x_{n+1}=a \cdot x_{n}-x_{n-1} .
$$

Solution:

Suppose that $n \in \mathbb{N}$. We then observe that:

$$
\left\{\begin{array}{l}
x_{n}^{2}-x_{n-1} \cdot x_{n+1}=1 \\
x_{n+1}^{2}-x_{n} \cdot x_{n+2}=1
\end{array}\right.
$$

If we subtract these two equations, we obtain:

$$
x_{n}^{2}+x_{n} \cdot x_{n+2}=x_{n+1}^{2}+x_{n-1} \cdot x_{n+1} .
$$

In particular:

$$
x_{n} \cdot\left(x_{n}+x_{n+2}\right)=x_{n+1} \cdot\left(x_{n-1}+x_{n+1}\right)
$$

which implies:

$$
\begin{equation*}
\frac{x_{n+2}+x_{n}}{x_{n+1}}=\frac{x_{n+1}+x_{n-1}}{x_{n}} \tag{1}
\end{equation*}
$$

We can iteratively apply the identity in (1) in order to deduce that for all positive natural numbers n :

$$
\frac{x_{n+1}+x_{n-1}}{x_{n}}=\frac{x_{2}+x_{0}}{x_{1}}
$$

In particular, if we define $a:=\frac{x_{2}+x_{0}}{x_{1}}$. Then a is a real number and it is the case that for all positive natural numbers n :

$$
x_{n+1}=a \cdot x_{n}-x_{n-1} .
$$

Exercise 3. For non-negative integers n and k, define $Q(n, k)$ to be the coefficient of x^{k} in the polynomial $\left(1+x+x^{2}+x^{3}\right)^{n}$. Show that:

$$
Q(n, k)=\sum_{j=0}^{k}\binom{n}{j} \cdot\binom{n}{k-2 j}
$$

Solution: Given a polynomial $p(x)$ and a non-negative integer k, we denote by $\left[x^{k}\right] p(x)$ the coefficient of x^{k} in $p(x)$. With this notation, we observe that:

$$
Q(n, k)=\left[x^{k}\right]\left(1+x+x^{2}+x^{3}\right)^{n}=\left[x^{k}\right]\left((1+x) \cdot\left(1+x^{2}\right)\right)^{n}=\left[x^{k}\right]\left((1+x)^{n} \cdot\left(1+x^{2}\right)^{n}\right)
$$

We note that this expression equals:

$$
\sum_{j=0}^{k}\left(\left[x^{2 j}\right]\left(1+x^{2}\right)^{n}\right) \cdot\left(\left[x^{k-2 j}\right](1+x)^{n}\right)
$$

By the Binomial Theorem, this equals:

$$
\sum_{j=0}^{k}\binom{n}{j} \cdot\binom{n}{k-2 j}
$$

as was claimed.
Exercise 4. Suppose that n is a positive integer. Show that:

$$
\left(\frac{2 n-1}{e}\right)^{\frac{2 n-1}{2}}<1 \cdot 3 \cdot 5 \cdots \cdot(2 n-1)<\left(\frac{2 n+1}{e}\right)^{\frac{2 n+1}{2}}
$$

Solution: We will first prove:

$$
\begin{equation*}
\left(\frac{2 n-1}{e}\right)^{\frac{2 n-1}{2}}<1 \cdot 3 \cdot 5 \cdots \cdot(2 n-1) \tag{2}
\end{equation*}
$$

We take natural logarithms of both sides of (2) and we see that this is equivalent to showing:

$$
\frac{2 n-1}{2} \cdot(\ln (2 n-1)-1)<\ln 1+\ln 3+\ln 5+\cdots+\ln (2 n-1)
$$

In other words, we need to show:

$$
\begin{equation*}
(2 n-1) \cdot(\ln (2 n-1)-1)<2 \ln 3+2 \ln 5+\cdots+2 \ln (2 n-1) \tag{3}
\end{equation*}
$$

We will show (3) by appealing to upper Riemann sums for the natural logarithm function $\ln x$, which is defined for positive x. In particular, we note that:

$$
\ln ^{\prime \prime}(x)=-\frac{1}{x^{2}}<0
$$

Hence $l n$ is strictly concave. Moreover, we know that:

$$
\begin{equation*}
\int_{a}^{b} \ln (y) d y=(a \ln a-a)-(b \ln b-b) \tag{4}
\end{equation*}
$$

We note that the upper Riemann sum corresponding to the integral of \ln on the interval $[1,2 n-1]$, with the partition points $1,3,5, \ldots, 2 n-1$ equals:

$$
2 \ln 3+2 \ln 5+\cdots+2 \ln (2 n-1)
$$

By the strict concavity of \ln, this expression must be

$$
>\int_{1}^{2 n+1} \ln (y) d y
$$

which by (4) equals:

$$
(2 n-1) \ln (2 n-1)-(2 n-1)+1
$$

In particular:

$$
2 \ln 3+2 \ln 5+\cdots+2 \ln (2 n-1)>(2 n-1) \ln (2 n-1)-(2 n-1)=(2 n-1) \cdot(\ln (2 n-1)-1)
$$

and the inequality (3) now follows.
By using similar arguments, we will now prove:

$$
\begin{equation*}
1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 n-1)<\left(\frac{2 n+1}{e}\right)^{\frac{2 n+1}{1}} \tag{5}
\end{equation*}
$$

We again take natural logarithms and we deduce that (5) is equivalent to:

$$
\begin{equation*}
2 \ln 3+2 \ln 5+\cdots+2 \ln (2 n-1)<(2 n+1) \cdot(\ln (2 n+1)-1) \tag{6}
\end{equation*}
$$

We now observe that the left-hand side equals to the lower Riemann sum corresponding to the integral of \ln on the interval $[3,2 n+1]$, with the partition points $3,5,7, \cdots, 2 n+1$. By strict concavity, this expression is strictly less than $\int_{3}^{2 n+1} \ln (y) d y$. Furthermore, we observe that by (4):

$$
\begin{aligned}
\int_{3}^{2 n+1} \ln (y) d y= & (2 n+1) \ln (2 n+1)-(2 n+1)-3 \ln 3+3<(2 n+1) \ln (2 n+1)-(2 n+1)-3+3= \\
& =(2 n+1) \ln (2 n+1)-(2 n+1)=(2 n+1) \cdot(\ln (2 n+1)-1)
\end{aligned}
$$

The inequality (6) now follows.

