SOLUTIONS TO PRACTICE PUTNAM EXAM, OCTOBER 7, 2013.

Each problem is worth 10 points.

Exercise 1. a) Given a positive integer k > 3, find coefficients a,b,c € R, independent of k, such
that:

k? —2 _a n b n c
Kk (k=1 (k=2)!
b) Show that, for all positive integers n > 3:
3 2 <22—2+32—2+ +n2—2<3
(n—1)! 2! 3! n! ’
¢) Calculate:
I 222 322 n?—2
Jim (S5 g ),

Solution:
a) Let k be a positive integer such that k£ > 3. We want to find coefficients a,b, ¢ € R such that:

k? -2 _a L b . c
ok (k=1 (k=2)
Multiplying through by k!, this equation becomes:

a+b-k+c-(k*—k)=k —2.

In particular:
Ec+k-(b—c)+a=k —2.
It follows that this identity will be satisfied for all k£ > 3 provided that:
c=1b—c=0,a=-2
and hence:
a=-2b=1,c=1.
We note that the a, b, ¢ are independent of k. It follows that we can write:
k2 -2 2 1 1

R I s T

b) Let n be a positive integer such that n > 3.
From part a), it follows that:

;o 2-2 32 n?-2
T R

1 2 1 2 1 1 2 1 1

=1+ (- 3'+*+i)+( atata)t(Carata) o

*"'*(’(ni)!*(n—ls)ﬁ(ni4)!)+(*(n3 1)!+(n—12)!+(ni3)!>+<*%+(ni 1)!+(n_12)!>'

We note that this sum equals:

1 2 n+ 2
3——— — Z—3_ .
(n—=1! nl n!

1
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It immediately follows that I < 3. We now need to check that I > 3 — ﬁ In order to do this, we

need to show that ﬁ > ”:!2 whenever n > 3. The latter inequality is equivalent to 2n > n + 2,

which in turn is equivalent to n > 2. This inequality is true for n > 3. It follows that:

2
I>3—- ——
T o)
whenever n > 3.
¢) From part b), it follows that:
. 222 32-2 n?—2
Jim (St g ) =3 O

Exercise 2. Let (z)n>0 be a sequence of non-zero real numbers such that, for all positive natural
numbers n, the following identity holds:

2
T, — Tp—1 - Tpt1 = L.

Show that there exists a real number a such that, for all positive natural numbers n, the following
identity holds:

Tptl =0 Ty — Tp—1.
Solution:

Suppose that n € N. We then observe that:

x,% —Xp—1 Tpy1 =1
x%H — Xy - Tpto = 1.
If we subtract these two equations, we obtain:
xi + Xp  Tpyo = xiﬂ + Tpn—1" Tnt1-
In particular:
T (T + $n+2) = Tn+41 - (mnfl + :Cn+1),

which implies:

(1) Tn+42 + T _ Tn+1 + Tn—1 )

Ln41 T

We can iteratively apply the identity in (1) in order to deduce that for all positive natural numbers

n:
Tpy1 + Tp—1 T2 “+ xg

Tp T
In particular, if we define a := %ﬁ” Then a is a real number and it is the case that for all positive
natural numbers n:
Tyl =0 Ty — Tp—1. U

Exercise 3. For non-negative integers n and k, define Q(n, k) to be the coefficient of x* in the
polynomial (1 + x + 2% + 23)". Show that:

Q(n, k) = Jé (?) ' (k i12]')'

Solution: Given a polynomial p(z) and a non-negative integer k, we denote by [z*]p(z) the
coefficient of z* in p(z). With this notation, we observe that:

QU k) = 1" (1+ 2+ 22 +2%)" = (1] (1 +2) - (1+42)) " = (2% (A + )" - 1+ 22)").
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We note that this expression equals:
k

> (1 +a2") - (B2 (1 +a2)"),

i(?)(k—nw)

Jj=0

By the Binomial Theorem, this equals:

as was claimed. OO

Exercise 4. Suppose that n is a positive integer. Show that:

2n+1
2

o — 1\ 25 on+1
(” ) ? <1-3-5-----(2n—1)<(”+)

e e

Solution: We will first prove:

2n—1

2) ) P <135 (2n—1).

We take natural logarithms of both sides of (2) and we see that this is equivalent to showing:

(271—1
e

2n —1
n2 -(1n(2n—1)—1><1n1+1n3+1n5+~-~+1n(2n—1).
In other words, we need to show:

(3) (2n—1)- (ln(2n— 1) — 1) <23 +2In5+--+2In(2n —1).

We will show (3) by appealing to upper Riemann sums for the natural logarithm function Inz,
which is defined for positive z. In particular, we note that:

1
In"(z) = —— <0.
x

Hence In is strictly concave. Moreover, we know that:

b
(4) / In(y)dy = (alna —a) — (blnbd —b).

We note that the upper Riemann sum corresponding to the integral of In on the interval [1,2n — 1],
with the partition points 1,3,5,...,2n — 1 equals:
2In3 +2In5+---+2In(2n —1).

By the strict concavity of In, this expression must be

2n+1
> / In(y) dy,
1

2n—1)In(2n—1)— (2n—1) + 1.

which by (4) equals:

In particular:
213+ 25+ -+ 220 — 1) > 2n — ) In2n — 1) — 20— 1) = (2n — 1) - (1n(2n— 1) — 1)

and the inequality (3) now follows.
By using similar arguments, we will now prove:
2n+1

2n—|—1) T

(5) 1.3.5..... (Qn—1)<(
We again take natural logarithms and we deduce that (5) is equivalent to:

(6) 23+ 25+ +2In(2n— 1) < (2n+1)-(1n(2n+1)—1).
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We now observe that the left-hand side equals to the lower Riemann sum corresponding to the
integral of In on the interval [3,2n + 1], with the partition points 3,5,7,---,2n 4+ 1. By strict

concavity, this expression is strictly less than f;nﬂ

In(y) dy. Furthermore, we observe that by (4):
2n+1
/ In(y)dy = 2n+1)In(2n+1)— (2n+1)—3In3+3 < (2n+1)In(2n+1)—(2n+1)—-3+3 =
3

=@n+1)In@2n+1)— 2n+1) = (2n+1)- (1n(2n+ 1) — 1).
The inequality (6) now follows. O



