PRACTICE PUTNAM EXAM, OCTOBER 6, 2012.

No books, notes or calculators. Each problem is worth 10 points.
Exercise 1. Show that, for all positive integers n:

$$
\frac{1}{n^{2}}+\left(\frac{1}{n}+\frac{1}{n-1}\right)^{2}+\cdots+\left(\frac{1}{n}+\frac{1}{n-1}+\cdots+1\right)^{2}=2 n-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)
$$

Exercise 2. Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:
i) $f(1)=1$.
ii) $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$

Under these assumptions:

1) Show that $f(0)=0$.
2) Show that $f(x)=x$ for all $x \in \mathbb{Z}$.
3) Show that $f(x)=x$ for all $x \in \mathbb{Q}$.
4) In addition, if f is assumed to be continuous, show that $f(x)=x$ for all $x \in \mathbb{R}$.
5) If f is assumed to be monotone instead of continuous, can one make the same conclusion as in 4)?

Exercise 3. 1) Simplify the expression:

$$
\left(x^{2^{n}}+1\right)\left(x^{2^{n-1}}+1\right) \cdots\left(x^{2}+1\right)(x+1)
$$

2) Evaluate the limit:

$$
\lim _{n \rightarrow \infty}\left(x^{2^{n}}+1\right)\left(x^{2^{n-1}}+1\right) \cdots\left(x^{2}+1\right)(x+1)
$$

when $x=\frac{1}{2}$.
Exercise 4. Suppose that $A B C D$ is a tetrahedron in 3-space (which is not necessarily regular). At each face $S_{j}, j=1, \ldots, 4$ of the tetrahedron, we draw a vector \vec{n}_{j} which satisfies:
i) \vec{n}_{j} is perpendicular to S_{j}.
ii) \vec{n}_{j} points outwards.
iii) $\left|\vec{n}_{j}\right|$ equals the surface area of S_{j}. Show that:

$$
\vec{n}_{1}+\vec{n}_{2}+\vec{n}_{3}+\vec{n}_{4}=\overrightarrow{0} .
$$

