PUTNAM PRACTICE PROBLEMS 5

Exercise 1. Given a triangle $\triangle A B C$, and a point P inside the triangle, we denote by d_{a}, d_{b}, d_{c} the distances from P to the lines which contain the sides of the triangle. Find the point P for which the product $d_{a} \cdot d_{b} \cdot d_{c}$ is maximized.

Exercise 2. Suppose that $x, y, z>0$. Show that:

$$
\frac{x^{3}}{x^{2}+x y+y^{2}}+\frac{y^{3}}{y^{2}+y z+z^{2}}+\frac{z^{3}}{z^{2}+z x+x^{2}} \geq \frac{x+y+z}{3}
$$

Furthermore, show that equality holds if and only if $x=y=z$.
Exercise 3. Let $I_{n}:=1+\frac{1}{2}+\cdot+\frac{1}{n}$. Without using the logarithmic asymptotics for I_{n}, show that:

$$
I_{n} \geq n(\sqrt[n]{n+1}-1)
$$

