PUTNAM PRACTICE PROBLEMS 4

Exercise 1. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that:
i) $f(f(n))=n$.
ii) $f(f(n+2)+2)=n$.
iii) $f(0)=1$.

Exercise 2. Suppose that f and g are non-constant, differentiable and real-valued functions on \mathbb{R} such that:

$$
\left\{\begin{array}{l}
f(x+y)=f(x) f(y)-g(x) g(y) \\
g(x+y)=f(x) g(y)+g(x) f(y)
\end{array}\right.
$$

Suppose also that $f^{\prime}(0)=0$. Show that, for all $x \in \mathbb{R}$:

$$
(f(x))^{2}+(g(x))^{2}=1
$$

Exercise 3. Suppose that p is a prime number. Show that:

$$
\sum_{j=0}^{p}\binom{p}{j} \cdot\binom{p+j}{j} \equiv 2^{p}+1\left(\bmod p^{2}\right)
$$

[HINT: Recall that $\sum_{j=0}^{p}\binom{p}{j}=2^{p}$.]

