PUTNAM PRACTICE PROBLEMS 3

Exercise 1. (From last week) We recall that the two-dimensional torus \mathbb{T}^2 can be obtained by identifying the opposite sides of the square $[0,1] \times [0,1]$. We call a curve $\gamma : \mathbb{R} \to \mathbb{T}^2$ a straight line on the torus if given $t \in \mathbb{R}$, there exists $\epsilon > 0$ such that γ restricted to $[t - \epsilon, t + \epsilon]$ can be identified with a straight line on $[0,1] \times [0,1]$. (In other words, we are just projecting straight lines on \mathbb{R}^2 and taking the quotient by translation with \mathbb{Z}^2). Can one give a sufficient and necessary condition when a straight line on the torus has a dense image in \mathbb{T}^2 ?

Exercise 2. Suppose that p is a prime number. Show that (p-1)! + 1 is divisible by p.

Exercise 3. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a twice differentiable function such that:

$$f''(x) + f(x) = -xg(x)f'(x)$$

for some non-negative function $g : \mathbb{R} \to R$. Show that the function f is bounded.

Exercise 4. a) Let us denote by \mathcal{A} the set of all positive integers which are not divisible by the square of any prime number, i.e. $\mathcal{A} = \{n \in \mathbb{N}; q \in \mathbb{N}, q^2 | n \implies q = 1\}$. Given a positive integer n, show that:

$$\sum_{k \in \mathcal{A}} \left\lfloor \sqrt{\frac{n}{k}} \right\rfloor = n$$

b) Can one generalize this identity to involve r-th roots, instead of square roots, for a general positive integer $r \ge 2$? How does the definition of the set over which we are summing then change?