PUTNAM PRACTICE PROBLEMS 3

Exercise 1. (From last week) We recall that the two-dimensional torus \mathbb{T}^{2} can be obtained by identifying the opposite sides of the square $[0,1] \times[0,1]$. We call a curve $\gamma: \mathbb{R} \rightarrow \mathbb{T}^{2}$ a straight line on the torus if given $t \in \mathbb{R}$, there exists $\epsilon>0$ such that γ restricted to $[t-\epsilon, t+\epsilon]$ can be identified with a straight line on $[0,1] \times[0,1]$. (In other words, we are just projecting straight lines on \mathbb{R}^{2} and taking the quotient by translation with \mathbb{Z}^{2}). Can one give a sufficient and necessary condition when a straight line on the torus has a dense image in \mathbb{T}^{2} ?
Exercise 2. Suppose that p is a prime number. Show that $(p-1)!+1$ is divisible by p.
Exercise 3. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a twice differentiable function such that:

$$
f^{\prime \prime}(x)+f(x)=-x g(x) f^{\prime}(x)
$$

for some non-negative function $g: \mathbb{R} \rightarrow R$. Show that the function f is bounded.
Exercise 4. a) Let us denote by \mathcal{A} the set of all positive integers which are not divisible by the square of any prime number, i.e. $\mathcal{A}=\left\{n \in \mathbb{N} ; q \in \mathbb{N}, q^{2} \mid n \Longrightarrow q=1\right\}$. Given a positive integer n, show that:

$$
\sum_{k \in \mathcal{A}}\left\lfloor\sqrt{\frac{n}{k}}\right\rfloor=n
$$

b) Can one generalize this identity to involve r-th roots, instead of square roots, for a general positive integer $r \geq 2$? How does the definition of the set over which we are summing then change?

