
MATH 425, PRACTICE MIDTERM EXAM 2, SOLUTIONS.

Exercise 1. Suppose that u solves the boundary value problem:

(1)


ut(x, t)− uxx(x, t) = 1, for 0 < x < 1, t > 0

u(x, 0) = 0, for 0 ≤ x ≤ 1

u(0, t) = u(1, t) = 0, for t > 0.

a) Find a function v = v(x) which solves:{
−vxx(x) = 1, for 0 < x < 1

v(0) = v(1) = 0.

b) Show that:

u(x, t) ≤ v(x)

for all x ∈ [0, 1], t > 0.

c) Show that:

u(x, t) ≥ (1− e−2t)v(x)

for all x ∈ [0, 1], t > 0.

d) Deduce that, for all x ∈ [0, 1]:

u(x, t)→ v(x)

as t→∞.

Solution:

a) We need to solve v′′(x) = −1 with boundary conditions v(0) = v(1) = 0. The ODE implies
that v(x) = − 1

2x
2 +Ax+B for some constants A,B. We get the system of linear equations:{

B = 0

− 1
2 +A+B = 0

from where it follows that:

A =
1

2
and B = 0.

Hence:

v(x) =
1

2
x · (1− x).

b) Let us now think of v as a function of v as a function of (x, t) which doesn’t depend on x. By
construction, we know that:

vt(x, t)− vxx(x, t) = 1, for 0 < x < 1, t > 0

v(x, 0) ≥ 0, for 0 ≤ x ≤ 1

v(0, t) = v(1, t) = 0, for t > 0.

Here, we used the fact that 1
2x · (1− x) ≥ 0 for 0 ≤ x ≤ 1. By using the Comparison principle for

the heat equation (Exercise 3 on Homework Assignment 4), it follows that:

u(x, t) ≤ v(x, t) = v(x)
1
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for all x ∈ [0, 1], t > 0.

c) Let us define:

w(x, t) := (1− e−2t)v(x) =
1

2
· (1− e−2t) · x(1− x)

We compute:

wt(x, t) = e−2t · x(1− x)

wxx(x, t) = −(1− e−2t) = −1 + e−2t.

Hence:

wt(x, t)− wxx(x, t) = 1− e−2t
(

1− x(1− x)
)
.

We know that for x ∈ [0, 1], one has: x(1− x) ∈ [0, 1]. Hence, it follows that:

wt(x, t)− wxx(x, t) ≤ 1

for all 0 ≤ x ≤ 1, t > 0. In particular, we deduce that:
wt(x, t)− wxx(x, t) = 1, for 0 < x < 1, t > 0

w(x, 0) = 0, for 0 ≤ x ≤ 1

w(0, t) = w(1, t) = 0, for t > 0.

By using the comparison principle, it follows that, for all x ∈ [0, 1], t > 0, the following holds:

u(x, t) ≥ w(x, t) =
1

2
· (1− e−2t) · x(1− x) = (1− e−2t)v(x).

d) Combining the results of parts b) and c), it follows that, for all x ∈ [0, 1], t > 0, it holds that:

(1− e−2t)v(x) ≤ u(x, t) ≤ v(x).

Letting t→∞, it follows that:

u(x, t)→ v(x)

as t→∞. �

Exercise 2. a) Find the function u solving (1) of the previous exercise by using separation of
variables. Leave the Fourier coefficients in the form of an integral. [HINT: Consider the function
w := u− v for u, v as in the previous exercise.]

b) Show that this is the unique solution of the problem (1).

c) By using the formula from part a), give an alternative proof of the fact that u(x, t) → v(x)
as t → ∞. In this part, one is allowed to assume that the Fourier coefficients at time zero are
absolutely summable without proof.

Solution:

a) Let ũ(x, t) := u(x, t)− 1
2x(1− x). Then the function ũ solves:
ũt(x, t)− ũxx(x, t) = 0, for 0 < x < 1, t > 0

ũ(x, 0) = − 1
2x(1− x), for 0 ≤ x ≤ 1

ũ(0, t) = ũ(1, t) = 0, for t > 0.

We look for ũ in the form of a Fourier sine series with coefficients which depend on t.

ũ(x, t) =

∞∑
n=1

An(t) sin(nπx).
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We first set t = 0 to deduce that:

ũ(x, 0) = −1

2
x(1− x) =

∞∑
n=1

An(0) sin(nπx) = −1

2
x(1− x).

Hence, An(0) equals the n-th Fourier sine series coefficient of the function − 1
2x(1− x) on [0, 1]. In

particular,

An(0) = 2

∫ 1

0

(
− 1

2
x(1− x)

)
sin(nπx) dx.

In order for ũ to solve the heat equation, we need:

A′n(t)− n2π2An(t) = 0.

Hence:

An(t) = An(0) · e−n
2π2t.

Consequently:

ũ(x, t) =

∞∑
n=1

An(0) · e−n
2π2t · sin(nπx).

We then deduce that:

u(x, t) =
1

2
x(1− x) +

∞∑
n=1

An(0) · e−n
2π2t · sin(nπx).

b) Uniqueness of the problem (1) was shown in class by using the maximum principle and by using
the energy method.

c) We note that:

|u(x, t)− v(x)| =
∣∣∣ ∞∑
n=1

An(0) · e−n
2π2t · sin(nπx)

∣∣∣ ≤ ∞∑
n=1

|An(0)| · e−n
2π2t ≤ e−π

2t ·
∞∑
n=1

|An(0)|.

As is noted in the problem, we are allowed to assume that 1

∞∑
n=1

|An(0)| <∞.

The claim now follows. �

Exercise 3. Suppose that u : R3 → R is a harmonic function.

a) By using the Mean Value Property (in terms of averages over spheres), show that, for all x ∈ R3,
and for all R > 0, one has:

u(x) =
3

4πR3

∫
B(x,R)

u(y) dy.

b) Suppose, moreover, that
∫
R3 |u(y)| dy <∞. Show that then, one necessarily obtains:

u(x) = 0

for all x ∈ R3.

1We can integrate by parts twice in the definition of An(0) and use the fact that − 1
2
x(1 − x) vanishes at x = 0

and x = 1 in order to deduce that: |An(0)| ≤ C
n2 from where it indeed follows that

∑∞
n=1 |An(0)| <∞.
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Solution:

a) Let us fix x ∈ R3. The Mean Value Property, proved in Exercise 1 of Homework Assignment 7,
implies that, for all r > 0:

(2) u(x) =
1

4πr2

∫
∂B(x,r)

u(y) dS(y).

We note that:

3

4πR3

∫
B(x,R)

u(y) dS(y) =
3

4πR3

∫ R

0

(∫
∂B(x,r)

u(y) dS(y)
)
dr.

By the Mean Value Property (2), it follows that this expression equals:

3

4πR3

∫ R

0

4πr2u(x) dr = u(x) · 3

4πR3
·
∫ R

0

4πr2 dr = u(x).

b) We note that, by part a), it follows that:

|u(x)| ≤ 3

4πR3

∫
B(x,R)

|u(y)| dy ≤ 3

4πR3

∫
R3

|u(y)| dy.

Since
∫
R3 |u(y)| dy <∞, we can let R→∞ to deduce that |u(x)| = 0. It follows that u is identically

equal to zero. �

Exercise 4. Suppose that u : B(0, 2) → R is a harmonic function on the open ball B(0, 2) ⊆ R2,

which is continuous on its closure B(0, 2). Suppose that, in polar coordinates:

u(2, θ) = 3 sin 5θ + 1

for all θ ∈ [0, 2π].

a) Find the maximum and minimum value of u in B(0, 2) without explicitly solving the Laplace
equation.

b) Calculate u(0) without explicitly solving the Laplace equation.

Solution:

a) By using the weak maximum principle for solutions to the Laplace equation, we know that

the maximum of the function u on B(0, 2) is achieved on ∂B(0, 2). We observe that the function
u(2, θ) = 3 sin 5θ + 1 takes values in [−2, 4]. It equals −2 when sin 5θ = −1, which happens at
θ = 3π

10 (for example). Moreover u(2, θ) = 4 when sin 5θ = 1, which happens at θ = π
10 (for exam-

ple). Hence, the maximum value of u on B(0, 2) is 4 and the minimum value of u on B(0, 2) is
−2.

b) We use the Mean Value Property to deduce that u(0) equals the average of u over the circle
∂B(0, 2). Since the average of the 3 sin 5θ term equals zero, it follows that u(0) = 1. �


