MATH 425, PRACTICE MIDTERM EXAM 2, SOLUTIONS.

Exercise 1. Suppose that u solves the boundary value problem:

$$
\left\{\begin{array}{l}
u_{t}(x, t)-u_{x x}(x, t)=1, \text { for } 0<x<1, t>0 \tag{1}\\
u(x, 0)=0, \text { for } 0 \leq x \leq 1 \\
u(0, t)=u(1, t)=0, \text { for } t>0
\end{array}\right.
$$

a) Find a function $v=v(x)$ which solves:

$$
\left\{\begin{array}{l}
-v_{x x}(x)=1, \text { for } 0<x<1 \\
v(0)=v(1)=0
\end{array}\right.
$$

b) Show that:

$$
u(x, t) \leq v(x)
$$

for all $x \in[0,1], t>0$.
c) Show that:

$$
u(x, t) \geq\left(1-e^{-2 t}\right) v(x)
$$

for all $x \in[0,1], t>0$.
d) Deduce that, for all $x \in[0,1]$:

$$
u(x, t) \rightarrow v(x)
$$

as $t \rightarrow \infty$.

Solution:

a) We need to solve $v^{\prime \prime}(x)=-1$ with boundary conditions $v(0)=v(1)=0$. The ODE implies that $v(x)=-\frac{1}{2} x^{2}+A x+B$ for some constants A, B. We get the system of linear equations:

$$
\left\{\begin{array}{l}
B=0 \\
-\frac{1}{2}+A+B=0
\end{array}\right.
$$

from where it follows that:

$$
A=\frac{1}{2} \text { and } B=0
$$

Hence:

$$
v(x)=\frac{1}{2} x \cdot(1-x)
$$

b) Let us now think of v as a function of v as a function of (x, t) which doesn't depend on x. By construction, we know that:

$$
\left\{\begin{array}{l}
v_{t}(x, t)-v_{x x}(x, t)=1, \text { for } 0<x<1, t>0 \\
v(x, 0) \geq 0, \text { for } 0 \leq x \leq 1 \\
v(0, t)=v(1, t)=0, \text { for } t>0
\end{array}\right.
$$

Here, we used the fact that $\frac{1}{2} x \cdot(1-x) \geq 0$ for $0 \leq x \leq 1$. By using the Comparison principle for the heat equation (Exercise 3 on Homework Assignment 4), it follows that:

$$
u(x, t) \leq v(x, t)=v(x)
$$

for all $x \in[0,1], t>0$.
c) Let us define:

$$
w(x, t):=\left(1-e^{-2 t}\right) v(x)=\frac{1}{2} \cdot\left(1-e^{-2 t}\right) \cdot x(1-x)
$$

We compute:

$$
\begin{gathered}
w_{t}(x, t)=e^{-2 t} \cdot x(1-x) \\
w_{x x}(x, t)=-\left(1-e^{-2 t}\right)=-1+e^{-2 t}
\end{gathered}
$$

Hence:

$$
w_{t}(x, t)-w_{x x}(x, t)=1-e^{-2 t}(1-x(1-x))
$$

We know that for $x \in[0,1]$, one has: $x(1-x) \in[0,1]$. Hence, it follows that:

$$
w_{t}(x, t)-w_{x x}(x, t) \leq 1
$$

for all $0 \leq x \leq 1, t>0$. In particular, we deduce that:

$$
\left\{\begin{array}{l}
w_{t}(x, t)-w_{x x}(x, t)=1, \text { for } 0<x<1, t>0 \\
w(x, 0)=0, \text { for } 0 \leq x \leq 1 \\
w(0, t)=w(1, t)=0, \text { for } t>0
\end{array}\right.
$$

By using the comparison principle, it follows that, for all $x \in[0,1], t>0$, the following holds:

$$
u(x, t) \geq w(x, t)=\frac{1}{2} \cdot\left(1-e^{-2 t}\right) \cdot x(1-x)=\left(1-e^{-2 t}\right) v(x)
$$

d) Combining the results of parts b) and c), it follows that, for all $x \in[0,1], t>0$, it holds that:

$$
\left(1-e^{-2 t}\right) v(x) \leq u(x, t) \leq v(x)
$$

Letting $t \rightarrow \infty$, it follows that:

$$
u(x, t) \rightarrow v(x)
$$

as $t \rightarrow \infty$.
Exercise 2. a) Find the function u solving (1) of the previous exercise by using separation of variables. Leave the Fourier coefficients in the form of an integral. [HINT: Consider the function $w:=u-v$ for u, v as in the previous exercise.]
b) Show that this is the unique solution of the problem (1).
c) By using the formula from part a), give an alternative proof of the fact that $u(x, t) \rightarrow v(x)$ as $t \rightarrow \infty$. In this part, one is allowed to assume that the Fourier coefficients at time zero are absolutely summable without proof.

Solution:

a) Let $\tilde{u}(x, t):=u(x, t)-\frac{1}{2} x(1-x)$. Then the function \tilde{u} solves:

$$
\left\{\begin{array}{l}
\tilde{u}_{t}(x, t)-\tilde{u}_{x x}(x, t)=0, \text { for } 0<x<1, t>0 \\
\tilde{u}(x, 0)=-\frac{1}{2} x(1-x), \text { for } 0 \leq x \leq 1 \\
\tilde{u}(0, t)=\tilde{u}(1, t)=0, \text { for } t>0
\end{array}\right.
$$

We look for \tilde{u} in the form of a Fourier sine series with coefficients which depend on t.

$$
\tilde{u}(x, t)=\sum_{n=1}^{\infty} A_{n}(t) \sin (n \pi x)
$$

We first set $t=0$ to deduce that:

$$
\tilde{u}(x, 0)=-\frac{1}{2} x(1-x)=\sum_{n=1}^{\infty} A_{n}(0) \sin (n \pi x)=-\frac{1}{2} x(1-x)
$$

Hence, $A_{n}(0)$ equals the n-th Fourier sine series coefficient of the function $-\frac{1}{2} x(1-x)$ on $[0,1]$. In particular,

$$
A_{n}(0)=2 \int_{0}^{1}\left(-\frac{1}{2} x(1-x)\right) \sin (n \pi x) d x
$$

In order for \tilde{u} to solve the heat equation, we need:

$$
A_{n}^{\prime}(t)-n^{2} \pi^{2} A_{n}(t)=0
$$

Hence:

$$
A_{n}(t)=A_{n}(0) \cdot e^{-n^{2} \pi^{2} t}
$$

Consequently:

$$
\tilde{u}(x, t)=\sum_{n=1}^{\infty} A_{n}(0) \cdot e^{-n^{2} \pi^{2} t} \cdot \sin (n \pi x)
$$

We then deduce that:

$$
u(x, t)=\frac{1}{2} x(1-x)+\sum_{n=1}^{\infty} A_{n}(0) \cdot e^{-n^{2} \pi^{2} t} \cdot \sin (n \pi x)
$$

b) Uniqueness of the problem (1) was shown in class by using the maximum principle and by using the energy method.
c) We note that:

$$
|u(x, t)-v(x)|=\left|\sum_{n=1}^{\infty} A_{n}(0) \cdot e^{-n^{2} \pi^{2} t} \cdot \sin (n \pi x)\right| \leq \sum_{n=1}^{\infty}\left|A_{n}(0)\right| \cdot e^{-n^{2} \pi^{2} t} \leq e^{-\pi^{2} t} \cdot \sum_{n=1}^{\infty}\left|A_{n}(0)\right|
$$

As is noted in the problem, we are allowed to assume that ${ }^{1}$

$$
\sum_{n=1}^{\infty}\left|A_{n}(0)\right|<\infty
$$

The claim now follows.
Exercise 3. Suppose that $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a harmonic function.
a) By using the Mean Value Property (in terms of averages over spheres), show that, for all $x \in \mathbb{R}^{3}$, and for all $R>0$, one has:

$$
u(x)=\frac{3}{4 \pi R^{3}} \int_{B(x, R)} u(y) d y
$$

b) Suppose, moreover, that $\int_{\mathbb{R}^{3}}|u(y)| d y<\infty$. Show that then, one necessarily obtains:

$$
u(x)=0
$$

for all $x \in \mathbb{R}^{3}$.

[^0]
Solution:

a) Let us fix $x \in \mathbb{R}^{3}$. The Mean Value Property, proved in Exercise 1 of Homework Assignment 7, implies that, for all $r>0$:

$$
\begin{equation*}
u(x)=\frac{1}{4 \pi r^{2}} \int_{\partial B(x, r)} u(y) d S(y) \tag{2}
\end{equation*}
$$

We note that:

$$
\frac{3}{4 \pi R^{3}} \int_{B(x, R)} u(y) d S(y)=\frac{3}{4 \pi R^{3}} \int_{0}^{R}\left(\int_{\partial B(x, r)} u(y) d S(y)\right) d r
$$

By the Mean Value Property (2), it follows that this expression equals:

$$
\frac{3}{4 \pi R^{3}} \int_{0}^{R} 4 \pi r^{2} u(x) d r=u(x) \cdot \frac{3}{4 \pi R^{3}} \cdot \int_{0}^{R} 4 \pi r^{2} d r=u(x) .
$$

b) We note that, by part a), it follows that:

$$
|u(x)| \leq \frac{3}{4 \pi R^{3}} \int_{B(x, R)}|u(y)| d y \leq \frac{3}{4 \pi R^{3}} \int_{\mathbb{R}^{3}}|u(y)| d y
$$

Since $\int_{\mathbb{R}^{3}}|u(y)| d y<\infty$, we can let $R \rightarrow \infty$ to deduce that $|u(x)|=0$. It follows that u is identically equal to zero.

Exercise 4. Suppose that $u: B(0,2) \rightarrow \mathbb{R}$ is a harmonic function on the open ball $B(0,2) \subseteq \mathbb{R}^{2}$, which is continuous on its closure $\overline{B(0,2)}$. Suppose that, in polar coordinates:

$$
u(2, \theta)=3 \sin 5 \theta+1
$$

for all $\theta \in[0,2 \pi]$.
a) Find the maximum and minimum value of u in $\overline{B(0,2)}$ without explicitly solving the Laplace equation.
b) Calculate $u(0)$ without explicitly solving the Laplace equation.

Solution:

a) By using the weak maximum principle for solutions to the Laplace equation, we know that the maximum of the function u on $\overline{B(0,2)}$ is achieved on $\partial B(0,2)$. We observe that the function $u(2, \theta)=3 \sin 5 \theta+1$ takes values in $[-2,4]$. It equals -2 when $\sin 5 \theta=-1$, which happens at $\theta=\frac{3 \pi}{10}$ (for example). Moreover $u(2, \theta)=4$ when $\sin 5 \theta=1$, which happens at $\theta=\frac{\pi}{10}$ (for example). Hence, the maximum value of u on $\overline{B(0,2)}$ is 4 and the minimum value of u on $\overline{B(0,2)}$ is -2 .
b) We use the Mean Value Property to deduce that $u(0)$ equals the average of u over the circle $\partial B(0,2)$. Since the average of the $3 \sin 5 \theta$ term equals zero, it follows that $u(0)=1$.

[^0]: ${ }^{1}$ We can integrate by parts twice in the definition of $A_{n}(0)$ and use the fact that $-\frac{1}{2} x(1-x)$ vanishes at $x=0$ and $x=1$ in order to deduce that: $\left|A_{n}(0)\right| \leq \frac{C}{n^{2}}$ from where it indeed follows that $\sum_{n=1}^{\infty}\left|A_{n}(0)\right|<\infty$.

