MATH 425, PRACTICE MIDTERM EXAM 2.

Exercise 1. Suppose that u solves the boundary value problem:

$$
\left\{\begin{array}{l}
u_{t}(x, t)-u_{x x}(x, t)=1, \text { for } 0<x<1, t>0 \tag{1}\\
u(x, 0)=0, \text { for } 0 \leq x \leq 1 \\
u(0, t)=u(1, t)=0, \text { for } t>0
\end{array}\right.
$$

a) Find a function $v=v(x)$ which solves:

$$
\left\{\begin{array}{l}
-v_{x x}(x)=1, \text { for } 0<x<1 \\
v(0)=v(1)=0
\end{array}\right.
$$

b) Show that:

$$
u(x, t) \leq v(x)
$$

for all $x \in[0,1], t>0$.
c) Show that:

$$
u(x, t) \geq\left(1-e^{-2 t}\right) v(x)
$$

for all $x \in[0,1], t>0$.
d) Deduce that, for all $x \in[0,1]$:

$$
u(x, t) \rightarrow v(x)
$$

as $t \rightarrow \infty$.
Exercise 2. a) Find the function u solving (1) of the previous exercise by using separation of variables. Leave the Fourier coefficients in the form of an integral. [HINT: Consider the function $w:=u-v$ for u, v as in the previous exercise.]
b) Show that this is the unique solution of the problem (1).
c) By using the formula from part a), give an alternative proof of the fact that $u(x, t) \rightarrow v(x)$ as $t \rightarrow \infty$. In this part, one is allowed to assume that the Fourier coefficients at time zero are absolutely summable without proof.
Exercise 3. Suppose that $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a harmonic function.
a) By using the Mean Value Property (in terms of averages over spheres), show that, for all $x \in \mathbb{R}^{3}$, and for all $R>0$, one has:

$$
u(x)=\frac{3}{4 \pi R^{3}} \int_{B(x, R)} u(y) d y
$$

b) Suppose, moreover, that $\int_{\mathbb{R}^{3}}|u(y)| d y<\infty$. Show that then, one necessarily obtains:

$$
u(x)=0
$$

for all $x \in \mathbb{R}^{3}$.

Exercise 4. Suppose that $u: B(0,2) \rightarrow \mathbb{R}$ is a harmonic function on the open ball $B(0,2) \subseteq \mathbb{R}^{2}$, which is continuous on its closure $\overline{B(0,2)}$. Suppose that, in polar coordinates:

$$
u(2, \theta)=3 \sin 5 \theta+1
$$

for all $\theta \in[0,2 \pi]$.
a) Find the maximum and minimum value of u in $\overline{B(0,2)}$ without explicitly solving the Laplace equation.
b) Calculate $u(0)$ without explicitly solving the Laplace equation.

