
PRACTICE HOMEWORK FOR MATH 425, SOLUTIONS

Exercise 1. Evaluate the integral: ∫ 2π

0

eθ sin θ dθ

a) by using Integration by parts.
b) by using complex numbers.

Solution:
a) Method 1: using integration by parts∫ 2π

0

eθ sin θ dθ =

{
u = eθ, du = eθdθ

dv = sin θ dθ, v = − cos θ

= −eθ cos θ
∣∣∣θ=2π

θ=0
+

∫ 2π

0

eθ cos θ dθ = (−e2π + 1) +

∫ 2π

0

eθ cos θ dθ =

{
u = eθ, du = eθdθ

dv = cos θ dθ, v = sin θ

= (−e2π + 1) + eθ sin θ
∣∣∣θ=2π

θ=0
−
∫ 2π

0

eθ sin θ dθ = (−e2π + 1)−
∫ 2π

0

eθ sin θ dθ

Hence,

2

∫ 2π

0

eθ sin θ dθ = (−e2π + 1)

from where we deduce that the value of the wanted integral is:

−e2π + 1

2

b) Method 2: using Complex numbers
We note that:∫ 2π

0

eθ sin θ dθ = Im
(∫ 2π

0

eθ(cos θ + i sin θ)d θ
)

= Im
(∫ 2π

0

eθeiθd θ
)

=

= Im
(∫ 2π

0

e(1+i)θd θ
)

= Im
1

1 + i
e(1+i)θ

∣∣∣θ=2π

θ=0
= Im

( 1

1 + i
(e2π − 1)

)
= Im

(1− i
2

(e2π − 1)
)

=
−e2π + 1

2
�.

Exercise 2. Using Euler’s formula, rederive the identities:
a) sin(x+ y) = sinx cos y + cosx sin y.
b) cos(x+ y) = cosx cos y − sinx sin y.

Solution:

We recall that for x, y ∈ R, one has:

ei(x+y) = eix · eiy.
We rewrite both sides by using Euler’s formula to obtain:

cos(x+ y) + i sin(x+ y) = (cosx+ i sinx) · (cos y + i sin y).

It follows that:

cos(x+ y) + i sin(x+ y) = (cosx cos y − sinx sin y) + i(sinx cos y + sin y cosx).
1
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Claims a) and b) now follow by taking real and imaginary parts of both sides �.

Exercise 3. Find all complex numbers z such that:
a) z6 = 1.
b) z7 = i.
c) Re(ez) > 0.

Solution:

a) The wanted complex numbers are zk = e
2πik

6 = e
kπi
3 = cos(kπ3 ) + i sin(kπ3 ), for k = 0, 1, . . . , 5.

b) Since i = e
iπ
2 , we can deduce that the the solutions are given by zk = e

iπ
14+

2πki
7 , for k = 0, 1, . . . , 6.

c) We write z = reiθ, where r > 0 and θ ∈ [0, 2π). In this way, r and θ are uniquely determined
from z. Since z = r cos θ + i sin θ, we deduce that:

ez = er(cos θ+i sin θ) = er cos θ · eir sin θ = er cos θ ·
(

cos(r sin θ) + i sin(r sin θ)
)

Since er cos θ is a positive real number, the condition we need to satisfy is cos(r sin θ) > 0. An
equivalent way to write this is to say that there exists k ∈ Z such that:

r sin θ ∈ (−π
2

+ 2kπ,
π

2
+ 2kπ). �

Exercise 4. a) For what c ∈ R does there exist a non-zero function w : [0, 2π]→ C such that:

w′′ − c2w = 0

and such that w(0) = w(2π) = 0?
b) What if w instead solves w′′ + c2w = 0 (again with the assumption that w(0) = w(2π) = 0)?

Solution:

Let us first suppose that c 6= 0. From ODE theory, we know that w = a1e
ct + a2e

−ct for some
(complex numbers) a1, a2. The condition w(0) = w(2π) = 0 then implies that:{

a1 + a2 = 0

a1e
2πc + a2e

−2πc = 0

From the above two equations, it follows that a1 = a2 = 0 and so w is identically zero. If c = 0,
then w = a1 + a2t. In this case, w(0) = 0 implies that a1 = 0 and w(2π) = 0 implies that a2 = 0,
and so w is again identically zero. Hence, in a), it is not possible to find such a function w.

b) We now consider what happens when w′′ + c2w = 0. Based on part a), we need to assume
that c 6= 0. In this case, we recall that w(t) = a1 cos(ct) + a2 sin(ct). Since w(0) = a1 = 0, it follows
that w(t) = a2 sin(ct). We then obtain that w(2π) = a2 sin(2πc). Since we want a2 6= 0 (since
otherwise, w is identically zero), it follows that we need to have sin(2πc) = 0, and hence 2πc = kπ
for some k ∈ Z. Consequently, c = k

2 for some k ∈ Z \ {0}. �

Exercise 5. Suppose that w : [0,+∞)→ R solves the ODE:

(1) aw′′ + bw′ + cw = 0

for some constants a, b, c. Furthermore, we assume that b ≥ 0.
a) Let us define the Energy to be:

E(t) :=
1

2

[
a(w′(t))2 + c(w(t))2

]
.

Without solving the ODE (1), show that E′(t) ≤ 0.
b) Under the additional assumption that a > 0 and c > 0, show that w(0) = 0 and w′(0) = 0 implies
that w(t) = 0 for all t ≥ 0.
c) Assume again that a > 0 and c > 0. Show that if w1 and w2 solve the ODE (1) and if w1(0) =
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w2(0), w′1(0) = w′2(0), then one can deduce that w1(t) = w2(t) for all t ≥ 0. In this way, we obtain
uniqueness of solutions to (1).

Solution:

a) We use the product rule to calculate: E′(t) = aw′w′′ + cww′. We can now use the ODE to
deduce that w′′ = −bw′ − cw. Hence:

E′(t) = w′(−bw′ − cw) + cww′ = −b(w′)2 ≤ 0

since b ≥ 0. In other words, E(t) is a decreasing function of t on [0,+∞).

b) By assumption E(0) = 1
2

[
a(w′(0))2 + c(w(0))2

]
= 0. Since a, c > 0, it follows that E(t) is

non-negative. Finally, from part a), it follows that E(t) is a decreasing function on [0,+∞), hence
E(t) is identically zero on [0,+∞). In particular, since both a and c are positive, it follows that
w(t) = 0 for all t ≥ 0.

c) If w1 and w2 solve the ODE, then so does w := w1 − w2. The function w then satisfies the
conditions of part b) and the claim follows. �


