PRACTICE HOMEWORK FOR MATH 425, SOLUTIONS

Exercise 1. Evaluate the integral:

$$
\int_{0}^{2 \pi} e^{\theta} \sin \theta d \theta
$$

a) by using Integration by parts.
b) by using complex numbers.

Solution:

a) Method 1: using integration by parts

$$
\begin{gathered}
\int_{0}^{2 \pi} e^{\theta} \sin \theta d \theta= \begin{cases}u=e^{\theta}, & d u=e^{\theta} d \theta \\
d v=\sin \theta d \theta, & v=-\cos \theta\end{cases} \\
=-\left.e^{\theta} \cos \theta\right|_{\theta=0} ^{\theta=2 \pi}+\int_{0}^{2 \pi} e^{\theta} \cos \theta d \theta=\left(-e^{2 \pi}+1\right)+\int_{0}^{2 \pi} e^{\theta} \cos \theta d \theta= \begin{cases}u=e^{\theta}, & d u=e^{\theta} d \theta \\
d v=\cos \theta d \theta, & v=\sin \theta\end{cases} \\
=\left(-e^{2 \pi}+1\right)+\left.e^{\theta} \sin \theta\right|_{\theta=0} ^{\theta=2 \pi}-\int_{0}^{2 \pi} e^{\theta} \sin \theta d \theta=\left(-e^{2 \pi}+1\right)-\int_{0}^{2 \pi} e^{\theta} \sin \theta d \theta
\end{gathered}
$$

Hence,

$$
2 \int_{0}^{2 \pi} e^{\theta} \sin \theta d \theta=\left(-e^{2 \pi}+1\right)
$$

from where we deduce that the value of the wanted integral is:

$$
\frac{-e^{2 \pi}+1}{2}
$$

b) Method 2: using Complex numbers

We note that:

$$
\begin{gathered}
\int_{0}^{2 \pi} e^{\theta} \sin \theta d \theta=\operatorname{Im}\left(\int_{0}^{2 \pi} e^{\theta}(\cos \theta+i \sin \theta) d \theta\right)=\operatorname{Im}\left(\int_{0}^{2 \pi} e^{\theta} e^{i \theta} d \theta\right)= \\
=\operatorname{Im}\left(\int_{0}^{2 \pi} e^{(1+i) \theta} d \theta\right)=\left.\operatorname{Im} \frac{1}{1+i} e^{(1+i) \theta}\right|_{\theta=0} ^{\theta=2 \pi}=\operatorname{Im}\left(\frac{1}{1+i}\left(e^{2 \pi}-1\right)\right) \\
=\operatorname{Im}\left(\frac{1-i}{2}\left(e^{2 \pi}-1\right)\right)=\frac{-e^{2 \pi}+1}{2}
\end{gathered}
$$

Exercise 2. Using Euler's formula, rederive the identities:
a) $\sin (x+y)=\sin x \cos y+\cos x \sin y$.
b) $\cos (x+y)=\cos x \cos y-\sin x \sin y$.

Solution:

We recall that for $x, y \in \mathbb{R}$, one has:

$$
e^{i(x+y)}=e^{i x} \cdot e^{i y}
$$

We rewrite both sides by using Euler's formula to obtain:

$$
\cos (x+y)+i \sin (x+y)=(\cos x+i \sin x) \cdot(\cos y+i \sin y)
$$

It follows that:

$$
\cos (x+y)+i \sin (x+y)=(\cos x \cos y-\sin x \sin y)+i(\sin x \cos y+\sin y \cos x)
$$

Claims a) and b) now follow by taking real and imaginary parts of both sides
Exercise 3. Find all complex numbers z such that:
a) $z^{6}=1$.
b) $z^{7}=i$.
c) $\operatorname{Re}\left(e^{z}\right)>0$.

Solution:

a) The wanted complex numbers are $z_{k}=e^{\frac{2 \pi i k}{6}}=e^{\frac{k \pi i}{3}}=\cos \left(\frac{k \pi}{3}\right)+i \sin \left(\frac{k \pi}{3}\right)$, for $k=0,1, \ldots, 5$.
b) Since $i=e^{\frac{i \pi}{2}}$, we can deduce that the the solutions are given by $z_{k}=e^{\frac{i \pi}{14}+\frac{2 \pi k i}{7}}$, for $k=0,1, \ldots, 6$.
c) We write $z=r e^{i \theta}$, where $r>0$ and $\theta \in[0,2 \pi)$. In this way, r and θ are uniquely determined from z. Since $z=r \cos \theta+i \sin \theta$, we deduce that:

$$
e^{z}=e^{r(\cos \theta+i \sin \theta)}=e^{r \cos \theta} \cdot e^{i r \sin \theta}=e^{r \cos \theta} \cdot(\cos (r \sin \theta)+i \sin (r \sin \theta))
$$

Since $e^{r \cos \theta}$ is a positive real number, the condition we need to satisfy is $\cos (r \sin \theta)>0$. An equivalent way to write this is to say that there exists $k \in \mathbb{Z}$ such that:

$$
r \sin \theta \in\left(-\frac{\pi}{2}+2 k \pi, \frac{\pi}{2}+2 k \pi\right)
$$

Exercise 4. a) For what $c \in \mathbb{R}$ does there exist a non-zero function $w:[0,2 \pi] \rightarrow \mathbb{C}$ such that:

$$
w^{\prime \prime}-c^{2} w=0
$$

and such that $w(0)=w(2 \pi)=0$?
b) What if w instead solves $w^{\prime \prime}+c^{2} w=0$ (again with the assumption that $w(0)=w(2 \pi)=0$)?

Solution:

Let us first suppose that $c \neq 0$. From ODE theory, we know that $w=a_{1} e^{c t}+a_{2} e^{-c t}$ for some (complex numbers) a_{1}, a_{2}. The condition $w(0)=w(2 \pi)=0$ then implies that:

$$
\left\{\begin{array}{l}
a_{1}+a_{2}=0 \\
a_{1} e^{2 \pi c}+a_{2} e^{-2 \pi c}=0
\end{array}\right.
$$

From the above two equations, it follows that $a_{1}=a_{2}=0$ and so w is identically zero. If $c=0$, then $w=a_{1}+a_{2} t$. In this case, $w(0)=0$ implies that $a_{1}=0$ and $w(2 \pi)=0$ implies that $a_{2}=0$, and so w is again identically zero. Hence, in a), it is not possible to find such a function w.
b) We now consider what happens when $w^{\prime \prime}+c^{2} w=0$. Based on part a), we need to assume that $c \neq 0$. In this case, we recall that $w(t)=a_{1} \cos (c t)+a_{2} \sin (c t)$. Since $w(0)=a_{1}=0$, it follows that $w(t)=a_{2} \sin (c t)$. We then obtain that $w(2 \pi)=a_{2} \sin (2 \pi c)$. Since we want $a_{2} \neq 0$ (since otherwise, w is identically zero), it follows that we need to have $\sin (2 \pi c)=0$, and hence $2 \pi c=k \pi$ for some $k \in \mathbb{Z}$. Consequently, $c=\frac{k}{2}$ for some $k \in \mathbb{Z} \backslash\{0\}$.
Exercise 5. Suppose that $w:[0,+\infty) \rightarrow \mathbb{R}$ solves the $O D E$:

$$
\begin{equation*}
a w^{\prime \prime}+b w^{\prime}+c w=0 \tag{1}
\end{equation*}
$$

for some constants a, b, c. Furthermore, we assume that $b \geq 0$.
a) Let us define the Energy to be:

$$
E(t):=\frac{1}{2}\left[a\left(w^{\prime}(t)\right)^{2}+c(w(t))^{2}\right]
$$

Without solving the $O D E(1)$, show that $E^{\prime}(t) \leq 0$.
b) Under the additional assumption that $a>0$ and $c>0$, show that $w(0)=0$ and $w^{\prime}(0)=0$ implies that $w(t)=0$ for all $t \geq 0$.
c) Assume again that $\bar{a}>0$ and $c>0$. Show that if w_{1} and w_{2} solve the $O D E$ (1) and if $w_{1}(0)=$
$w_{2}(0), w_{1}^{\prime}(0)=w_{2}^{\prime}(0)$, then one can deduce that $w_{1}(t)=w_{2}(t)$ for all $t \geq 0$. In this way, we obtain uniqueness of solutions to (1).

Solution:

a) We use the product rule to calculate: $E^{\prime}(t)=a w^{\prime} w^{\prime \prime}+c w w^{\prime}$. We can now use the ODE to deduce that $w^{\prime \prime}=-b w^{\prime}-c w$. Hence:

$$
E^{\prime}(t)=w^{\prime}\left(-b w^{\prime}-c w\right)+c w w^{\prime}=-b\left(w^{\prime}\right)^{2} \leq 0
$$

since $b \geq 0$. In other words, $E(t)$ is a decreasing function of t on $[0,+\infty)$.
b) By assumption $E(0)=\frac{1}{2}\left[a\left(w^{\prime}(0)\right)^{2}+c(w(0))^{2}\right]=0$. Since $a, c>0$, it follows that $E(t)$ is non-negative. Finally, from part a), it follows that $E(t)$ is a decreasing function on $[0,+\infty)$, hence $E(t)$ is identically zero on $[0,+\infty)$. In particular, since both a and c are positive, it follows that $w(t)=0$ for all $t \geq 0$.
c) If w_{1} and w_{2} solve the ODE, then so does $w:=w_{1}-w_{2}$. The function w then satisfies the conditions of part b) and the claim follows.

