MATH 425, MIDTERM EXAM 2, SOLUTIONS.

Each exercise is worth 25 points.
Exercise 1. Consider the initial value problem:

Ut — Uge =0, for0<x <1, t>0
(1) u(z,0) =xz(l —x), for0 <z <1
uw(0,t) =0, u(1,t) =0, fort > 0.

a) Find the mazimum of the function u on [0,1], X [0, +00);.

b) Show that, for all0 <z <1,t>0:
u(x,t) > 0.
¢) Show that, for all0 <z <1,t{>0:
u(z,t) < z(1 — z)e 5.
d) Given x € [0,1], calculate limy_, o0 u(z,t).

Solution:

a) We observe that that the function u equals zero on the lateral sides x = 0 and = 1. Hence,
by the Maximum Principle, it has to achieve its maximum on the bottom side ¢ = 0. The function
z(1 — z) achieves its maximum i at r = % Hence, the maximum of u equals i and it is achieved
at the point (z,t) = (3,0).

b) First solution: We apply the Minimum Principle. We note by (2) that the function w is
non-negative on the lateral sides (z = 0 and = = 1) and on the bottom side (¢ = 0) of the infinite
rectangle [0, 1], % [0, +00);. The claim then follows from the minimum principle. Strictly speaking,
we should apply the Minimum Principle stated in class on a finite rectangle [0, 1], x [0,7]: and we
then let T — +o0.

Second solution: We can apply the Comparison Principle. We recall the Comparison Princi-
ple, which was proved in Exercise 3 of Homework Assignment 4. We can summarize this principle
as follows:

Suppose that:

Vp — Ugg = W — Tpy, for 0 <x <1, t>0
(2) v(z,0) > w(z,0), for 0 <z <1

v(0,t) > w(0,t), v(1,t) > w(l,t), for t > 0.
Then:

v(z,t) > w(z,t)
for all x € [0,1], ¢ > 0. In other words, if vy — vzy > Wy — Wy, and if v > w on the bottom and
lateral sides of [0, 1], X [0, +00)¢, then we can deduce that v > w on all of [0, 1], x [0, +00);.
We now apply the Comparison Principle. Let us note u = 0 on the lateral sides and since u

equals z(1 — ), which is non-negative, on the bottom side. Hence, we can apply the Comparison
Principle with v = v and with w = 0 in order to deduce the claim.
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¢) In part ¢), we will have to apply the Comparison Principle.
Let us take:
v(z,t) = 2z(1 — x)e 5.

We compute:

v, t) = —8x(1 — z)e ™
and

Vo (2, 1) = =275,
Hence:
v (2,t) — Vg (2, 1) = —82(1 — 2)e 3 + 278 = 2(1 — da(1 — x))e %",
Let us recall that we are considering z € [0, 1] and so:
1—4z(l—2) > 1—4-%207

since z — x(1 — z) achieves its maximum on [0, 1] at the point z = 1. Hence:
UVt — Vg Z 0
Let us also note that:
v(z,0) = u(x,0) = z(1 — x)
for all z € [0,1].
Moreover,
v(0,t) = v(1,t) = u(0,t) = u(1,t) =0
for all £ > 0. It follows that we can apply the Comparison Principle with v = z(1 — x)e~8" as above
and with w = u, the solution to (2) in order to deduce the claim.

d) Let us fix z € [0,1]. From parts b) and c¢), it follows that, for all ¢t > 0:

0 <u(x,t) <a(l—z)e .
It follows that the limit as t — oo of u(x,t) equals zero. O

Exercise 2. a) Find a solution to the following boundary value problem by separation of variables:

ug(2,t) — Ugg(x,t) = sin(brz), for0 <z <1,t>0
(3) u(z,0) =0, for0 <z <1

u(0,t) = u(l,¢) =0, fort>0.
b) Is this the only solution to (3)?

Solution:

a) We look for a solution of the form:
(4) u(z,t) = A(t) - sin(brz).

The reason why we look for such a solution is that the right-hand side of the equation contains a
sin(5mx) term. We expect that this is the only frequency that will be present in the solution. In the
form of u that we are looking for, for each fixed ¢, the function u(z,t) has a Fourier sine expansion
in terms of sin(5mx). The coefficient will be a function of .

Let us note that, for u defined as in (4), the boundary conditions u(0,t) = u(1,t) = 0 are satisfied
since sin(0) = sin(57) = 0.

Our goal is to choose A(t) such that u solves the inhomogeneous heat equation. We compute:

Up — Ugy = {A’(t) + 257T2A(t)} -sin(5mx)
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which, by the equation, equals:
sin(57x).
We can now equate the coefficient of sin(57z) to deduce:
(5) A'(t) 4+ 2512 A(t) = 1.

Hence, the condition (5) guarantees that the function u defined in (4) solves the PDE.
We now need to solve for A(t). By the condition that u(x,0) = A(0) - sin(5nz), it follows that
A(0) = 0. Hence, we need to solve the following initial value problem to determine A(t):

A(0) = 0.
We solve the ODE by multiplying with the integrating factor ¢t The ODE then becomes:
6257T2tA/(t) + 257T2625772tA(t) _ 6257r2t

{A’(t) +25m2A(t) = 1

ie.
(6257r2tA(t))/ — 2577t
Hence:
257t _ 257t
e A(t) = Ao + 55-2¢
We note that A(0) = 0 implies that Ay = —52—. Consequently:
1 2
A(t) = A1—ewy
)= 550 ‘

It follows that: .

25 {1 — 6725”—%} - sin(5mx).

b) We know from class that the boundary value problem for the heat equation on a spatial interval
of finite length admits unique solutions, either by applying the Maximum Principle or by applying
the Energy Method. Hence, the function « from part a) is the unique solution to (3). O

u(x,t) =

Exercise 3. Let us recall that a function u : R™ — R is called subharmonic if Au > 0. In particular,
every harmonic function is subharmonic.

a) Given a harmonic function u : R® — R, show that the function v := u? is subharmonic on
R™.
b) Under which conditions on u can we deduce that the function v defined above is harmonic?

Solution:

a) We compute, for 1 < j <n:
2
Vy; = (U7)g; = 2Uly,
and so:
2 2
Vajo; = (U )gjz; = 2Ug; U, + 2Ulg o, = 2uy, 4 2ty o,

We sum in j = 1,...,n in order to deduce:
Av = QZui + 2ulu = 2|Vul? + 2ulu.
J
j=1

Since Au = 0, this quantity equals: 2|Vu|? which is non-negative. Hence, v is subharmonic.

b) From part a), we recall that:
Av = 2|Vul?.

In particular v is harmonic if and only if Vu = 0, which is the case if and only if u is constant. O
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Exercise 4. Suppose that u : B(0,1) — R is a harmonic function on the open ball B(0,1) C R?,
which extends to a continuous function on its closure B(0,1).
Suppose that, in polar coordinates:

u(1,0) =2+ 3sinf
for all 6 € [0, 27].

a) Find the minimum and the mazimum of u on B(0,1).
b) Find the value of u at the origin.

¢) Find an expression for the value of u at the point (%, %) in polar coordinates by using Pois-
son’s formula. Don’t explicitly evaluate the integral.

d) Does there exist a point in B(0,1) at which u takes the value 5%

Solution:

a) We use the Weak Maximum Principle for the Laplace equation in order to deduce that u achieves
its maximum and minimum on the boundary. More precisely:

min ¥ = min u

B(0,1) 0B(0,1)
and

max u = max u.

B(0,1) 0B(0,1)

We know that for all 6 € [0, 27]:
—1<2+3sinf <5.

Moreover: 5
2 + 3sin (1) -1
2
and -
2 4 3sin (5) — 5.
Hence:
min v = min u=—1
B(0,1) 9B(0,1)
and
max 4 = max u = D.
B(0,1) 0B(0,1)

b) We can use the Mean Value Property to deduce that the value of u at the origin equals the
average of the function u on the circle 9B(0,1). In particular:

u(0) = -

27
- %/0 (2 + 3sinf) df = 2,

since fOQW sinfdf = 0.

¢) We use Poisson’s formula and we compute:

(D)= [ e g b [T,
2’2 27 o (5)2—2-5-1cos(5 —9¢)+1 2 Jo 5 —4sing
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d) Suppose that there were a point xg € B(0,1) at which u(xg) = 5, then by part a), it would
follow that:

u(xzg) = Ll;(l(?)li) u.

Hence, u achieves its maximum at an interior point. The Strong Maximum Principle would then
imply that « was constant. However, u is not constant on the boundary dB(0, 1), which gives us a
contradiction. Hence, there is no such point xg in the interior. [




