
MATH 425, MIDTERM EXAM 2, SOLUTIONS.

Each exercise is worth 25 points.

Exercise 1. Consider the initial value problem:

(1)


ut − uxx = 0, for 0 < x < 1, t > 0

u(x, 0) = x(1− x), for 0 ≤ x ≤ 1

u(0, t) = 0, u(1, t) = 0, for t > 0.

a) Find the maximum of the function u on [0, 1]x × [0,+∞)t.

b) Show that, for all 0 ≤ x ≤ 1, t ≥ 0 :

u(x, t) ≥ 0.

c) Show that, for all 0 ≤ x ≤ 1, t ≥ 0:

u(x, t) ≤ x(1− x)e−8t.

d) Given x ∈ [0, 1], calculate limt→∞ u(x, t).

Solution:

a) We observe that that the function u equals zero on the lateral sides x = 0 and x = 1. Hence,
by the Maximum Principle, it has to achieve its maximum on the bottom side t = 0. The function
x(1 − x) achieves its maximum 1

4 at x = 1
2 . Hence, the maximum of u equals 1

4 and it is achieved

at the point (x, t) = ( 1
2 , 0).

b) First solution: We apply the Minimum Principle. We note by (2) that the function u is
non-negative on the lateral sides (x = 0 and x = 1) and on the bottom side (t = 0) of the infinite
rectangle [0, 1]x × [0,+∞)t. The claim then follows from the minimum principle. Strictly speaking,
we should apply the Minimum Principle stated in class on a finite rectangle [0, 1]x × [0, T ]t and we
then let T → +∞.

Second solution: We can apply the Comparison Principle. We recall the Comparison Princi-
ple, which was proved in Exercise 3 of Homework Assignment 4. We can summarize this principle
as follows:

Suppose that:

(2)


vt − vxx ≥ wt − xxx, for 0 < x < 1, t > 0

v(x, 0) ≥ w(x, 0), for 0 ≤ x ≤ 1

v(0, t) ≥ w(0, t), v(1, t) ≥ w(1, t), for t > 0.

Then:

v(x, t) ≥ w(x, t)

for all x ∈ [0, 1], t > 0. In other words, if vt − vxx ≥ wt − wxx and if v ≥ w on the bottom and
lateral sides of [0, 1]x × [0,+∞)t, then we can deduce that v ≥ w on all of [0, 1]x × [0,+∞)t.

We now apply the Comparison Principle. Let us note u = 0 on the lateral sides and since u
equals x(1 − x), which is non-negative, on the bottom side. Hence, we can apply the Comparison
Principle with v = u and with w = 0 in order to deduce the claim.
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c) In part c), we will have to apply the Comparison Principle.
Let us take:

v(x, t) := x(1− x)e−8t.

We compute:

vt(x, t) = −8x(1− x)e−8t

and

vxx(x, t) = −2e−8t.

Hence:

vt(x, t)− vxx(x, t) = −8x(1− x)e−8t + 2e−8t = 2(1− 4x(1− x))e−8t.

Let us recall that we are considering x ∈ [0, 1] and so:

1− 4x(1− x) ≥ 1− 4 · 1

4
= 0,

since x 7→ x(1− x) achieves its maximum on [0, 1] at the point x = 1
2 . Hence:

vt − vxx ≥ 0.

Let us also note that:

v(x, 0) = u(x, 0) = x(1− x)

for all x ∈ [0, 1].
Moreover,

v(0, t) = v(1, t) = u(0, t) = u(1, t) = 0

for all t > 0. It follows that we can apply the Comparison Principle with v = x(1− x)e−8t as above
and with w = u, the solution to (2) in order to deduce the claim.

d) Let us fix x ∈ [0, 1]. From parts b) and c), it follows that, for all t > 0:

0 ≤ u(x, t) ≤ x(1− x)e−8t.

It follows that the limit as t→∞ of u(x, t) equals zero. �

Exercise 2. a) Find a solution to the following boundary value problem by separation of variables:

(3)


ut(x, t)− uxx(x, t) = sin(5πx), for 0 < x < 1, t > 0

u(x, 0) = 0, for 0 ≤ x ≤ 1

u(0, t) = u(1, t) = 0, for t > 0.

b) Is this the only solution to (3)?

Solution:

a) We look for a solution of the form:

(4) u(x, t) = A(t) · sin(5πx).

The reason why we look for such a solution is that the right-hand side of the equation contains a
sin(5πx) term. We expect that this is the only frequency that will be present in the solution. In the
form of u that we are looking for, for each fixed t, the function u(x, t) has a Fourier sine expansion
in terms of sin(5πx). The coefficient will be a function of t.

Let us note that, for u defined as in (4), the boundary conditions u(0, t) = u(1, t) = 0 are satisfied
since sin(0) = sin(5π) = 0.

Our goal is to choose A(t) such that u solves the inhomogeneous heat equation. We compute:

ut − uxx =
{
A′(t) + 25π2A(t)

}
· sin(5πx)
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which, by the equation, equals:
sin(5πx).

We can now equate the coefficient of sin(5πx) to deduce:

(5) A′(t) + 25π2A(t) = 1.

Hence, the condition (5) guarantees that the function u defined in (4) solves the PDE.
We now need to solve for A(t). By the condition that u(x, 0) = A(0) · sin(5πx), it follows that

A(0) = 0. Hence, we need to solve the following initial value problem to determine A(t):{
A′(t) + 25π2A(t) = 1

A(0) = 0.

We solve the ODE by multiplying with the integrating factor e25π
2t. The ODE then becomes:

e25π
2tA′(t) + 25π2e25π

2tA(t) = e25π
2t

i.e.
(e25π

2tA(t))′ = e25π
2t.

Hence:

e25π
2tA(t) = A0 +

1

25π2
e25π

2t.

We note that A(0) = 0 implies that A0 = − 1
25π2 . Consequently:

A(t) =
1

25π2
·
{

1− e−25π
2t
}
.

It follows that:

u(x, t) =
1

25π2
·
{

1− e−25π
2t
}
· sin(5πx).

b) We know from class that the boundary value problem for the heat equation on a spatial interval
of finite length admits unique solutions, either by applying the Maximum Principle or by applying
the Energy Method. Hence, the function u from part a) is the unique solution to (3). �

Exercise 3. Let us recall that a function u : Rn → R is called subharmonic if ∆u ≥ 0. In particular,
every harmonic function is subharmonic.

a) Given a harmonic function u : Rn → R, show that the function v := u2 is subharmonic on
Rn.
b) Under which conditions on u can we deduce that the function v defined above is harmonic?

Solution:

a) We compute, for 1 ≤ j ≤ n:

vvj = (u2)xj
= 2uuxj

and so:
vxjxj

= (u2)xjxj
= 2uxj

uxj
+ 2uuxjxj

= 2u2xj
+ 2uuxjxj

We sum in j = 1, . . . , n in order to deduce:

∆v = 2

n∑
j=1

u2xj
+ 2u∆u = 2|∇u|2 + 2u∆u.

Since ∆u = 0, this quantity equals: 2|∇u|2 which is non-negative. Hence, v is subharmonic.

b) From part a), we recall that:

∆v = 2|∇u|2.
In particular v is harmonic if and only if ∇u = 0, which is the case if and only if u is constant. �
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Exercise 4. Suppose that u : B(0, 1) → R is a harmonic function on the open ball B(0, 1) ⊆ R2,

which extends to a continuous function on its closure B(0, 1).
Suppose that, in polar coordinates:

u(1, θ) = 2 + 3 sin θ

for all θ ∈ [0, 2π].

a) Find the minimum and the maximum of u on B(0, 1).

b) Find the value of u at the origin.

c) Find an expression for the value of u at the point ( 1
2 ,

π
2 ) in polar coordinates by using Pois-

son’s formula. Don’t explicitly evaluate the integral.

d) Does there exist a point in B(0, 1) at which u takes the value 5?

Solution:

a) We use the Weak Maximum Principle for the Laplace equation in order to deduce that u achieves
its maximum and minimum on the boundary. More precisely:

min
B(0,1)

u = min
∂B(0,1)

u

and

max
B(0,1)

u = max
∂B(0,1)

u.

We know that for all θ ∈ [0, 2π]:

−1 ≤ 2 + 3 sin θ ≤ 5.

Moreover:

2 + 3 sin
(3π

2

)
= −1

and

2 + 3 sin
(π

2

)
= 5.

Hence:

min
B(0,1)

u = min
∂B(0,1)

u = −1

and

max
B(0,1)

u = max
∂B(0,1)

u = 5.

b) We can use the Mean Value Property to deduce that the value of u at the origin equals the
average of the function u on the circle ∂B(0, 1). In particular:

u(0) =
1

2π

∫ 2π

0

(2 + 3 sin θ) dθ = 2,

since
∫ 2π

0
sin θ dθ = 0.

c) We use Poisson’s formula and we compute:

u
(1

2
,
π

2

)
=

1− ( 1
2 )2

2π
·
∫ 2π

0

2 + 3 sinφ

( 1
2 )2 − 2 · 12 · 1 cos(π2 − φ) + 1

dφ =
3

2π
·
∫ 2π

0

2 + 3 sinφ

5− 4 sinφ
dφ.
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d) Suppose that there were a point x0 ∈ B(0, 1) at which u(x0) = 5, then by part a), it would
follow that:

u(x0) = max
B(0,1)

u.

Hence, u achieves its maximum at an interior point. The Strong Maximum Principle would then
imply that u was constant. However, u is not constant on the boundary ∂B(0, 1), which gives us a
contradiction. Hence, there is no such point x0 in the interior. �


