MATH 425, MIDTERM EXAM 2, SOLUTIONS.

Each exercise is worth 25 points.
Exercise 1. Consider the initial value problem:

$$
\left\{\begin{array}{l}
u_{t}-u_{x x}=0, \text { for } 0<x<1, t>0 \tag{1}\\
u(x, 0)=x(1-x), \text { for } 0 \leq x \leq 1 \\
u(0, t)=0, u(1, t)=0, \text { for } t>0
\end{array}\right.
$$

a) Find the maximum of the function u on $[0,1]_{x} \times[0,+\infty)_{t}$.
b) Show that, for all $0 \leq x \leq 1, t \geq 0$:

$$
u(x, t) \geq 0
$$

c) Show that, for all $0 \leq x \leq 1, t \geq 0$:

$$
u(x, t) \leq x(1-x) e^{-8 t}
$$

d) Given $x \in[0,1]$, calculate $\lim _{t \rightarrow \infty} u(x, t)$.

Solution:

a) We observe that that the function u equals zero on the lateral sides $x=0$ and $x=1$. Hence, by the Maximum Principle, it has to achieve its maximum on the bottom side $t=0$. The function $x(1-x)$ achieves its maximum $\frac{1}{4}$ at $x=\frac{1}{2}$. Hence, the maximum of u equals $\frac{1}{4}$ and it is achieved at the point $(x, t)=\left(\frac{1}{2}, 0\right)$.
b) First solution: We apply the Minimum Principle. We note by (2) that the function u is non-negative on the lateral sides $(x=0$ and $x=1)$ and on the bottom side $(t=0)$ of the infinite rectangle $[0,1]_{x} \times[0,+\infty)_{t}$. The claim then follows from the minimum principle. Strictly speaking, we should apply the Minimum Principle stated in class on a finite rectangle $[0,1]_{x} \times[0, T]_{t}$ and we then let $T \rightarrow+\infty$.

Second solution: We can apply the Comparison Principle. We recall the Comparison Principle, which was proved in Exercise 3 of Homework Assignment 4. We can summarize this principle as follows:

Suppose that:

$$
\left\{\begin{array}{l}
v_{t}-v_{x x} \geq w_{t}-x_{x x}, \text { for } 0<x<1, t>0 \tag{2}\\
v(x, 0) \geq w(x, 0), \text { for } 0 \leq x \leq 1 \\
v(0, t) \geq w(0, t), v(1, t) \geq w(1, t), \text { for } t>0
\end{array}\right.
$$

Then:

$$
v(x, t) \geq w(x, t)
$$

for all $x \in[0,1], t>0$. In other words, if $v_{t}-v_{x x} \geq w_{t}-w_{x x}$ and if $v \geq w$ on the bottom and lateral sides of $[0,1]_{x} \times[0,+\infty)_{t}$, then we can deduce that $v \geq w$ on all of $[0,1]_{x} \times[0,+\infty)_{t}$.

We now apply the Comparison Principle. Let us note $u=0$ on the lateral sides and since u equals $x(1-x)$, which is non-negative, on the bottom side. Hence, we can apply the Comparison Principle with $v=u$ and with $w=0$ in order to deduce the claim.
c) In part c), we will have to apply the Comparison Principle.

Let us take:

$$
v(x, t):=x(1-x) e^{-8 t}
$$

We compute:

$$
v_{t}(x, t)=-8 x(1-x) e^{-8 t}
$$

and

$$
v_{x x}(x, t)=-2 e^{-8 t}
$$

Hence:

$$
v_{t}(x, t)-v_{x x}(x, t)=-8 x(1-x) e^{-8 t}+2 e^{-8 t}=2(1-4 x(1-x)) e^{-8 t}
$$

Let us recall that we are considering $x \in[0,1]$ and so:

$$
1-4 x(1-x) \geq 1-4 \cdot \frac{1}{4}=0
$$

since $x \mapsto x(1-x)$ achieves its maximum on $[0,1]$ at the point $x=\frac{1}{2}$. Hence:

$$
v_{t}-v_{x x} \geq 0
$$

Let us also note that:

$$
v(x, 0)=u(x, 0)=x(1-x)
$$

for all $x \in[0,1]$.
Moreover,

$$
v(0, t)=v(1, t)=u(0, t)=u(1, t)=0
$$

for all $t>0$. It follows that we can apply the Comparison Principle with $v=x(1-x) e^{-8 t}$ as above and with $w=u$, the solution to (2) in order to deduce the claim.
d) Let us fix $x \in[0,1]$. From parts b) and c), it follows that, for all $t>0$:

$$
0 \leq u(x, t) \leq x(1-x) e^{-8 t}
$$

It follows that the limit as $t \rightarrow \infty$ of $u(x, t)$ equals zero.
Exercise 2. a) Find a solution to the following boundary value problem by separation of variables:

$$
\left\{\begin{array}{l}
u_{t}(x, t)-u_{x x}(x, t)=\sin (5 \pi x), \text { for } 0<x<1, t>0 \tag{3}\\
u(x, 0)=0, \text { for } 0 \leq x \leq 1 \\
u(0, t)=u(1, t)=0, \text { for } t>0
\end{array}\right.
$$

b) Is this the only solution to (3)?

Solution:

a) We look for a solution of the form:

$$
\begin{equation*}
u(x, t)=A(t) \cdot \sin (5 \pi x) \tag{4}
\end{equation*}
$$

The reason why we look for such a solution is that the right-hand side of the equation contains a $\sin (5 \pi x)$ term. We expect that this is the only frequency that will be present in the solution. In the form of u that we are looking for, for each fixed t, the function $u(x, t)$ has a Fourier sine expansion in terms of $\sin (5 \pi x)$. The coefficient will be a function of t.

Let us note that, for u defined as in (4), the boundary conditions $u(0, t)=u(1, t)=0$ are satisfied since $\sin (0)=\sin (5 \pi)=0$.

Our goal is to choose $A(t)$ such that u solves the inhomogeneous heat equation. We compute:

$$
u_{t}-u_{x x}=\left\{A^{\prime}(t)+25 \pi^{2} A(t)\right\} \cdot \sin (5 \pi x)
$$

which, by the equation, equals:

$$
\sin (5 \pi x)
$$

We can now equate the coefficient of $\sin (5 \pi x)$ to deduce:

$$
\begin{equation*}
A^{\prime}(t)+25 \pi^{2} A(t)=1 \tag{5}
\end{equation*}
$$

Hence, the condition (5) guarantees that the function u defined in (4) solves the PDE.
We now need to solve for $A(t)$. By the condition that $u(x, 0)=A(0) \cdot \sin (5 \pi x)$, it follows that $A(0)=0$. Hence, we need to solve the following initial value problem to determine $A(t)$:

$$
\left\{\begin{array}{l}
A^{\prime}(t)+25 \pi^{2} A(t)=1 \\
A(0)=0
\end{array}\right.
$$

We solve the ODE by multiplying with the integrating factor $e^{25 \pi^{2} t}$. The ODE then becomes:

$$
e^{25 \pi^{2} t} A^{\prime}(t)+25 \pi^{2} e^{25 \pi^{2} t} A(t)=e^{25 \pi^{2} t}
$$

i.e.

$$
\left(e^{25 \pi^{2} t} A(t)\right)^{\prime}=e^{25 \pi^{2} t}
$$

Hence:

$$
e^{25 \pi^{2} t} A(t)=A_{0}+\frac{1}{25 \pi^{2}} e^{25 \pi^{2} t}
$$

We note that $A(0)=0$ implies that $A_{0}=-\frac{1}{25 \pi^{2}}$. Consequently:

$$
A(t)=\frac{1}{25 \pi^{2}} \cdot\left\{1-e^{-25 \pi^{2} t}\right\}
$$

It follows that:

$$
u(x, t)=\frac{1}{25 \pi^{2}} \cdot\left\{1-e^{-25 \pi^{2} t}\right\} \cdot \sin (5 \pi x)
$$

b) We know from class that the boundary value problem for the heat equation on a spatial interval of finite length admits unique solutions, either by applying the Maximum Principle or by applying the Energy Method. Hence, the function u from part a) is the unique solution to (3).
Exercise 3. Let us recall that a function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called subharmonic if $\Delta u \geq 0$. In particular, every harmonic function is subharmonic.
a) Given a harmonic function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$, show that the function $v:=u^{2}$ is subharmonic on \mathbb{R}^{n}.
b) Under which conditions on u can we deduce that the function v defined above is harmonic?

Solution:

a) We compute, for $1 \leq j \leq n$:

$$
v_{v_{j}}=\left(u^{2}\right)_{x_{j}}=2 u u_{x_{j}}
$$

and so:

$$
v_{x_{j} x_{j}}=\left(u^{2}\right)_{x_{j} x_{j}}=2 u_{x_{j}} u_{x_{j}}+2 u u_{x_{j} x_{j}}=2 u_{x_{j}}^{2}+2 u u_{x_{j} x_{j}}
$$

We sum in $j=1, \ldots, n$ in order to deduce:

$$
\Delta v=2 \sum_{j=1}^{n} u_{x_{j}}^{2}+2 u \Delta u=2|\nabla u|^{2}+2 u \Delta u
$$

Since $\Delta u=0$, this quantity equals: $2|\nabla u|^{2}$ which is non-negative. Hence, v is subharmonic.
b) From part a), we recall that:

$$
\Delta v=2|\nabla u|^{2}
$$

In particular v is harmonic if and only if $\nabla u=0$, which is the case if and only if u is constant.

Exercise 4. Suppose that $u: B(0,1) \rightarrow \mathbb{R}$ is a harmonic function on the open ball $B(0,1) \subseteq \mathbb{R}^{2}$, which extends to a continuous function on its closure $\overline{B(0,1)}$.

Suppose that, in polar coordinates:

$$
u(1, \theta)=2+3 \sin \theta
$$

for all $\theta \in[0,2 \pi]$.
a) Find the minimum and the maximum of u on $\overline{B(0,1)}$.
b) Find the value of u at the origin.
c) Find an expression for the value of u at the point $\left(\frac{1}{2}, \frac{\pi}{2}\right)$ in polar coordinates by using Poisson's formula. Don't explicitly evaluate the integral.
d) Does there exist a point in $B(0,1)$ at which u takes the value 5?

Solution:

a) We use the Weak Maximum Principle for the Laplace equation in order to deduce that u achieves its maximum and minimum on the boundary. More precisely:

$$
\frac{\min }{B(0,1)} u=\min _{\partial B(0,1)} u
$$

and

$$
\frac{\max }{B(0,1)} u=\max _{\partial B(0,1)} u
$$

We know that for all $\theta \in[0,2 \pi]$:

$$
-1 \leq 2+3 \sin \theta \leq 5
$$

Moreover:

$$
2+3 \sin \left(\frac{3 \pi}{2}\right)=-1
$$

and

$$
2+3 \sin \left(\frac{\pi}{2}\right)=5
$$

Hence:

$$
\min _{B(0,1)} u=\min _{\partial B(0,1)} u=-1
$$

and

$$
\frac{\max }{B(0,1)} u=\max _{\partial B(0,1)} u=5
$$

b) We can use the Mean Value Property to deduce that the value of u at the origin equals the average of the function u on the circle $\partial B(0,1)$. In particular:

$$
u(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi}(2+3 \sin \theta) d \theta=2
$$

since $\int_{0}^{2 \pi} \sin \theta d \theta=0$.
c) We use Poisson's formula and we compute:

$$
u\left(\frac{1}{2}, \frac{\pi}{2}\right)=\frac{1-\left(\frac{1}{2}\right)^{2}}{2 \pi} \cdot \int_{0}^{2 \pi} \frac{2+3 \sin \phi}{\left(\frac{1}{2}\right)^{2}-2 \cdot \frac{1}{2} \cdot 1 \cos \left(\frac{\pi}{2}-\phi\right)+1} d \phi=\frac{3}{2 \pi} \cdot \int_{0}^{2 \pi} \frac{2+3 \sin \phi}{5-4 \sin \phi} d \phi
$$

d) Suppose that there were a point $x_{0} \in B(0,1)$ at which $u\left(x_{0}\right)=5$, then by part a), it would follow that:

$$
u\left(x_{0}\right)=\frac{\max }{B(0,1)} u
$$

Hence, u achieves its maximum at an interior point. The Strong Maximum Principle would then imply that u was constant. However, u is not constant on the boundary $\partial B(0,1)$, which gives us a contradiction. Hence, there is no such point x_{0} in the interior.

