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Each problem is worth 10 points.

Exercise 1. (Green’s functions in two dimensions)

Let Ω ⊆ R2 be a bounded domain. Suppose that u : Ω → R is a harmonic function which ex-
tends continuously to Ω = Ω ∪ ∂Ω.

a) Prove that, for all x0 ∈ Ω:

u(x0) =
1

2π

∫
∂Ω

[
u(x) · ∂

∂n
log |x− x0| −

∂u

∂n
(x) · log |x− x0|

]
ds.

Here, ds denotes the arclength element on ∂Ω (recall that each connected component of ∂Ω is a
smooth curve).

b) Formulate a definition for the Green’s function for the Laplace equation on the two-dimensional
domain Ω as in part a).

c) Show that, for fixed x0 ∈ Ω, and for the right definition of the Green’s function G(x, x0), it
is true that:

u(x0) =

∫
∂Ω

u(x) · ∂G(x, x0)

∂n
dS

for all harmonic functions u as in part a).

Solution:
a) We can apply translation by x0 and see that it suffices to consider only the special case when

Ω contains the origin and x0 = 0.
Let us first show that, on R2 \ {0}, one has:

∆ log |x| = 0.

We write log |x| as log
√
x2

1 + x2
2.

Hence, by the Chain Rule:

(log |x|)x1
=

1√
x2

1 + x2
2

· 2x1

2
√
x2

1 + x2
2

=
x1

x2
1 + x2

2

.

(log |x|)x1x1
=

1

x2
1 + x2

2

− 2x2
1

(x2
1 + x2

2)2
.

By symmetry:

(log |x|)x2x2
=

1

x2
1 + x2

2

− 2x2
2

(x2
1 + x2

2)2
.

Summing the previous two identities, we obtain:

∆ log |x| = 0.

Alternatively, we can use the formula for Laplace’s operator in polar coordinates:

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

in order to deduce that:

∆ log r =
( ∂2

∂r2
+

1

r

∂

∂r

)
log r = − 1

r2
+

1

r2
= 0.

1
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Let us now suppose that ε > 0 is given and we consider the domain Ωε := Ω \B(0, ε). We can apply
Green’s second identity to deduce that:∫

∂Ωε

[
u(x) · ∂

∂n
log |x| − ∂u

∂n
(x) · log |x|

]
ds =

∫
Ωε

[
u(x) ·∆ log |x| − log |x| ·∆u(x)

]
dx = 0.

We note that:
∂Ωε = ∂Ω ∪ ∂B(0, ε).

Hence, it follows that:∫
∂Ω

[
u(x) · ∂

∂n
log |x| − ∂u

∂n
(x) · log |x|

]
ds = −

∫
∂B(0,ε)

[
u(x) · ∂

∂n
log |x| − ∂u

∂n
(x) · log |x|

]
ds

We need to show that the right-hand side converges to 2πu(0) as ε→ 0. On ∂B(0, ε), we know that
∂
∂n = − ∂

∂r . Hence, the first term equals:

1

ε

∫
∂B(0,ε)

u(x) ds

Since u is continuous, this quantity converges to 2πu(0) as ε→ 0. The second term equals:

log ε

∫
∂B(0,ε)

∂u

∂n
ds.

We can find M > 0, independent of ε such that
∣∣ ∂u
∂n

∣∣ ≤M . Hence, we obtain:∣∣∣ log ε

∫
∂B(0,ε)

∂u

∂n
ds
∣∣∣ ≤ 2πM · ε · | log ε|.

In order to prove the claim, we need to show that:

lim
ε→0

(
ε · log ε

)
= 0.

We note that this is not immediately obvious since, as ε → 0, the quantity log ε → −∞. Hence,
the goal is to show that ε goes to zero faster than log ε goes to −∞. We can look at an example
first to see why this should be true. Namely, if we take εn = 1

2n , then εn → 0 as n → ∞ and
log εn = −n log 2. Hence:

εn · log εn = −n log 2

2n
→ 0

as n→∞. In order to treat the general case, we can use the L’Hôpital rule:

lim
x→0+

(
x · log x

)
= lim
x→0+

log x
1
x

= lim
x→0+

(log x)′(
1
x

)′ =

= lim
x→0+

1
x
−1
x2

= lim
x→0+

(−x) = 0.

Alternatively, we can look at the function f(x) = −x · log x. The function f is non-negative for
x ∈ (0, 1]. By the product rule:

f ′(x) = −1− log x > 0

for all x ∈ (0, δ) when δ > 0 is sufficiently small. Hence, f is monotonically increasing on (0, δ).
From the earlier calculations, we know that f( 1

2n )→ 0 as n→∞, it follows that limx→0+ f(x) = 0.
The claim now follows.

b) We can now define the Green’s function for a two-dimensional domain Ω and x0 ∈ Ω to be
a function G(·, x0) : Ω \ {x0} → R satisfying the following properties:

i) G(x, x0) is twice continuously differentiable on Ω \ {x0}. Moreover,

∆xG(x, x0) = 0 on Ω \ {x0}.
ii) G(x, x0) for all x ∈ ∂Ω.
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iii) The function G(x, x0)− 1
2π log |x− x0| is finite at x0 and it is harmonic on all of Ω.

(The choice of the term − 1
2π log |x− x0| will become clear in part c)).

c) Let us fix x0 ∈ Ω. Suppose that G(x, x0) is as in part b). We let

H(x, x0) := G(x, x0)− 1

2π
log |x− x0|.

Then ∆H = 0 on Ω. We recall that ∆u = 0 on Ω. Hence, we obtain, by Green’s second identity, :

0 =

∫
∂Ω

(
u(x)

∂H(x, x0)

∂n
− ∂u

∂n
H(x, x0)

)
ds.

We recall from part a) that:

u(x0) =
1

2π

∫
∂Ω

[
u(x) · ∂

∂n
log |x− x0| −

∂u

∂n
(x) · log |x− x0|

]
ds.

We add the previous two identities to deduce that:

u(x0) =

∫
∂Ω

[
u(x) · ∂G(x, x0)

∂n
− ∂u

∂n
(x) ·G(x, x0)

]
ds.

Since G(x, x0) = 0 for x ∈ ∂Ω, we obtain that:

u(x0) =

∫
∂Ω

u(x) · ∂G(x, x0)

∂n
ds. �

Exercise 2. (An averaging property for smooth functions)
Suppose that φ : R3 → R is a smooth function which equals zero outside of some ball centered at the
origin.

a) Prove that:

φ(0) = − 1

4π

∫
R3

1

|x|
·∆φ(x) dx.

b) Why is identity in part a) immediate if the function φ is assumed to be harmonic?

Solution:

a) Let us assume that φ = 0 outside of B(0, R) ⊆ R3 and let ε > 0 be given. We let:

Ωε := B(0, 2R) \B(0, ε).

Let us recall that, on R3, one has:

∆
( 1

|x|

)
= 0.

We now apply Green’s second identity, noting that φ and 1
|x| are both smooth on Ωε in order to

deduce that:∫
Ωε

[ 1

|x|
·∆φ(x)−∆

( 1

|x|

)
· φ(x)

]
dx =

∫
∂Ωε

[ 1

|x|
· ∂φ
∂n
− ∂

∂n

( 1

|x|

)
· φ(x)

]
dS(x).

We note that ∂Ωε consists of two parts: ∂B(0, ε) and ∂B(0, 2R). Since, by assumption, φ vanishes
near ∂B(0, 2R), it follows that the contribution to the right-hand side from the outer boundary

∂B(0, 2R) equals to zero. Moreover, we know that ∆
(

1
|x|

)
= 0 on Ωε. Hence, it follows that:∫

Ωε

1

|x|
·∆φ(x) dx =

∫
∂B(0,ε)

[ 1

|x|
· ∂φ
∂n
− ∂

∂n

( 1

|x|

)
· φ(x)

]
dS(x).

We note that ∆φ = 0 for |x| ≥ 2R and we deduce that:∫
|x|≥ε

1

|x|
·∆φ(x) dx =

∫
∂B(0,ε)

[ 1

|x|
· ∂φ
∂n
− ∂

∂n

( 1

|x|

)
· φ(x)

]
dS(x).
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We now let ε→ 0. Arguing analogously as in class, we note that the the right-hand side converges
to −4πφ(0). Hence: ∫

R3

1

|x|
·∆φ(x) dx = −4πφ(0).

The claim now follows.
Remark: We can interpret this calculation as giving us a rigorous justification of the formula

that, on R3, one has:

∆
( 1

|x|

)
= −4πδ0

where δ0 is the Dirac delta function. We would formally define ∆
(

1
|x|

)
to be the object which, when

integrated against φ over R3 satisfies the following:∫
R3

∆
( 1

|x|

)
· φ(x) dx =

∫
R3

1

|x|
·∆φ(x) dx.

(We are formally integrating by parts twice in the x variable.) From the earlier calculations, we
know that this expression equals:

−4πφ(0) =

∫
R3

(
− 4πδ0(x)

)
· φ(x) dx.

Hence: ∫
R3

∆
( 1

|x|

)
· φ(x) dx =

∫
R3

(
− 4πδ0(x)

)
· φ(x) dx.

This holds for all functions φ which equal zero outside of some ball centered at the origin. Hence,
we formally obtain:

∆
( 1

|x|

)
= −4πδ0.

b) If φ is assumed to be harmonic, then the integral on the right-hand side vanishes. Hence, we
need to show that φ(0) = 0.
Solution 1:
We can use the mean value property. Namely, we know that φ(0) equals the average of the function
φ on ∂B(0, 2R). However, the function φ vanishes on ∂B(0, 2R), so φ(0) = 0.
Solution 2:
We note that φ is a smooth function which vanishes outside of B(0, R). It follows that φ is bounded.
By Liouville’s theorem, it follows that φ is constant. Since φ is equal to zero outside of B(0, R), it
follows that φ is equal to zero on all of R3. In particular φ(0) = 0. �.

Exercise 3. (Uniqueness of Green’s functions)

Suppose that Ω ⊆ R3 is a bounded domain. Suppose that, for given x0 ∈ Ω, the functions G1(x, x0)
and G2(x, x0), defined for x ∈ Ω\{x0}, satisfy the conditions of the Green’s function stated in class.

Prove that:

G1(x, x0) = G2(x, x0)

for all x ∈ Ω \ {x0}. In other words, the Green’s function is uniquely defined.

Solution:

It is not possible to directly apply the uniqueness result for the Laplace’s equation to the func-
tions G1(x, x0) and G2(x, x0) since they are not harmonic on all of Ω. We can, however, modify
this approach to prove the claim. Let us consider the functions:

u1(x) := G1(x, x0) +
1

4π|x− x0|
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and

u2(x) := G2(x, x0) +
1

4π|x− x0|
.

By construction, both u1 and u2 are harmonic on Ω.
Moreover, for x ∈ ∂Ω, we know that:

G1(x, x0) = G2(x, x0) = 0

and hence:

u1(x) = u2(x) =
1

4π|x− x0|
.

We can now apply the uniqueness result for Laplace’s equation to the functions u1 and u2 in order
to deduce that u1 = u2. From this equality, it follows that:

G1(x, x0) = G2(x, x0)

for all x ∈ Ω. �

Exercise 4. (Equipartition of energy for the wave equation) Suppose that g, h : R→ R are smooth
functions which vanish outside of some interval of finite length and let u ∈ C2(R × [0,+∞)) solve
the initial value problem for the wave equation in one dimension:

(1)

{
utt − uxx = 0 on R× (0,+∞)

u = g, ut = h on R× {t = 0}.

Note that, in this case the constant c is assumed to equal 1.

The kinetic energy of the solution u is defined by:

k(t) :=
1

2

∫ +∞

−∞
u2
t (x, t)dx

and the potential energy of u is defined by:

p(t) :=
1

2

∫ +∞

−∞
u2
x(x, t)dx.

a) Show that k(t) + p(t) is constant in time by using the formula from class:

u(x, t) = f(x− t) + g(x+ t).

Hence, the total energy is conserved in time. We recall that, in class, we proved this fact directly by
using the equation.

b) Moreover, show that k(t) = p(t) for sufficiently large t. In other words, the total energy gets
equally partitioned into the kinetic and potential part over a sufficiently long time.

Solution:

a) For u(x, t) = f(x− t) + g(x+ t), we compute:

ut(x, t) = −f ′(x− t) + g′(x+ t)

and

ux(x, t) = f ′(x− t) + g′(x+ t).

Let us denote the total energy by E(t). Then, we obtain that:

E(t) = k(t) + p(t) =
1

2

∫ +∞

−∞

(
− f ′(x− t) + g′(x+ t)

)2

dx+
1

2

∫ +∞

−∞

(
f ′(x− t) + g′(x+ t)

)2

dx =
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=

∫ +∞

−∞

(
(f ′(x− t))2 + (g′(x+ t))2 − f ′(x− t) · g′(x+ t) + f ′(x− t) · g′(x+ t)

)
dx =

=

∫ +∞

−∞

(
f ′(x− t)

)2

dx+

∫ +∞

−∞

(
g′(x+ t)

)2

dx =

=

∫ +∞

−∞

(
f ′(x)

)2

dx+

∫ +∞

−∞

(
g′(x)

)2

dx = E(0).

Hence, the energy is conserved in time.

b) We calculate as before:

k(t) =
1

2

∫ +∞

−∞

(
(f ′(x− t))2 + (g′(x+ t))2 − 2f ′(x− t) · g′(x+ t)

)
dx.

and:

p(t) =
1

2

∫ +∞

−∞

(
(f ′(x− t))2 + (g′(x+ t))2 + 2f ′(x− t) · g′(x+ t)

)
dx.

We note that the integrands are the same when:

f ′(x− t) · g′(x+ t) = 0.

We recall that the functions f and g equal zero outside of the interval [−R,R] for some R > 0. In
particular f ′ = g′ = 0 outside of [−R,R].

We note that (x + t) − (x − t) = 2t. Hence, if t > R, it is not possible for both x − t and
x + t to be in [−R,R]. In particular, it follows that either f ′(x − t) = 0 or g′(x + t) = 0, and so
f ′(x− t) · g′(x+ t) = 0 for all x ∈ R, whenever t > R.

Hence, we may conclude that:
k(t) = p(t)

for all t > R, where R is defined as above. �


