MATH 425, HOMEWORK 8

Each problem is worth 10 points.
Exercise 1. (Green's functions in two dimensions)
Let $\Omega \subseteq \mathbb{R}^{2}$ be a bounded domain. Suppose that $u: \Omega \rightarrow \mathbb{R}$ is a harmonic function which extends continuously to $\bar{\Omega}=\Omega \cup \partial \Omega$.
a) Prove that, for all $x_{0} \in \Omega$:

$$
u\left(x_{0}\right)=\frac{1}{2 \pi} \int_{\partial \Omega}\left[u(x) \cdot \frac{\partial}{\partial n} \log \left|x-x_{0}\right|-\frac{\partial u}{\partial n}(x) \cdot \log \left|x-x_{0}\right|\right] d s
$$

Here, ds denotes the arclength element on $\partial \Omega$ (recall that each connected component of $\partial \Omega$ is a smooth curve).
b) Formulate a definition for the Green's function for the Laplace equation on the two-dimensional domain Ω as in part a).
c) Show that, for fixed $x_{0} \in \Omega$, and for the right definition of the Green's function $G\left(x, x_{0}\right)$, it is true that:

$$
u\left(x_{0}\right)=\int_{\partial \Omega} u(x) \cdot \frac{\partial G\left(x, x_{0}\right)}{\partial n} d S
$$

for all harmonic functions u as in part a).

Solution:

a) We can apply translation by x_{0} and see that it suffices to consider only the special case when Ω contains the origin and $x_{0}=0$.

Let us first show that, on $\mathbb{R}^{2} \backslash\{0\}$, one has:

$$
\Delta \log |x|=0
$$

We write $\log |x|$ as $\log \sqrt{x_{1}^{2}+x_{2}^{2}}$.
Hence, by the Chain Rule:

$$
\begin{gathered}
(\log |x|)_{x_{1}}=\frac{1}{\sqrt{x_{1}^{2}+x_{2}^{2}}} \cdot \frac{2 x_{1}}{2 \sqrt{x_{1}^{2}+x_{2}^{2}}}=\frac{x_{1}}{x_{1}^{2}+x_{2}^{2}} \\
(\log |x|)_{x_{1} x_{1}}=\frac{1}{x_{1}^{2}+x_{2}^{2}}-\frac{2 x_{1}^{2}}{\left(x_{1}^{2}+x_{2}^{2}\right)^{2}}
\end{gathered}
$$

By symmetry:

$$
(\log |x|)_{x_{2} x_{2}}=\frac{1}{x_{1}^{2}+x_{2}^{2}}-\frac{2 x_{2}^{2}}{\left(x_{1}^{2}+x_{2}^{2}\right)^{2}}
$$

Summing the previous two identities, we obtain:

$$
\Delta \log |x|=0
$$

Alternatively, we can use the formula for Laplace's operator in polar coordinates:

$$
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}
$$

in order to deduce that:

$$
\Delta \log r=\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}\right) \log r=-\frac{1}{r^{2}}+\frac{1}{r^{2}}=0
$$

Let us now suppose that $\epsilon>0$ is given and we consider the domain $\Omega_{\epsilon}:=\Omega \backslash B(0, \epsilon)$. We can apply Green's second identity to deduce that:

$$
\int_{\partial \Omega_{\epsilon}}\left[u(x) \cdot \frac{\partial}{\partial n} \log |x|-\frac{\partial u}{\partial n}(x) \cdot \log |x|\right] d s=\int_{\Omega_{\epsilon}}[u(x) \cdot \Delta \log |x|-\log |x| \cdot \Delta u(x)] d x=0
$$

We note that:

$$
\partial \Omega_{\epsilon}=\partial \Omega \cup \partial B(0, \epsilon)
$$

Hence, it follows that:

$$
\int_{\partial \Omega}\left[u(x) \cdot \frac{\partial}{\partial n} \log |x|-\frac{\partial u}{\partial n}(x) \cdot \log |x|\right] d s=-\int_{\partial B(0, \epsilon)}\left[u(x) \cdot \frac{\partial}{\partial n} \log |x|-\frac{\partial u}{\partial n}(x) \cdot \log |x|\right] d s
$$

We need to show that the right-hand side converges to $2 \pi u(0)$ as $\epsilon \rightarrow 0$. On $\partial B(0, \epsilon)$, we know that $\frac{\partial}{\partial n}=-\frac{\partial}{\partial r}$. Hence, the first term equals:

$$
\frac{1}{\epsilon} \int_{\partial B(0, \epsilon)} u(x) d s
$$

Since u is continuous, this quantity converges to $2 \pi u(0)$ as $\epsilon \rightarrow 0$. The second term equals:

$$
\log \epsilon \int_{\partial B(0, \epsilon)} \frac{\partial u}{\partial n} d s
$$

We can find $M>0$, independent of ϵ such that $\left|\frac{\partial u}{\partial n}\right| \leq M$. Hence, we obtain:

$$
\left|\log \epsilon \int_{\partial B(0, \epsilon)} \frac{\partial u}{\partial n} d s\right| \leq 2 \pi M \cdot \epsilon \cdot|\log \epsilon|
$$

In order to prove the claim, we need to show that:

$$
\lim _{\epsilon \rightarrow 0}(\epsilon \cdot \log \epsilon)=0
$$

We note that this is not immediately obvious since, as $\epsilon \rightarrow 0$, the quantity $\log \epsilon \rightarrow-\infty$. Hence, the goal is to show that ϵ goes to zero faster than $\log \epsilon$ goes to $-\infty$. We can look at an example first to see why this should be true. Namely, if we take $\epsilon_{n}=\frac{1}{2^{n}}$, then $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $\log \epsilon_{n}=-n \log 2$. Hence:

$$
\epsilon_{n} \cdot \log \epsilon_{n}=-\frac{n \log 2}{2^{n}} \rightarrow 0
$$

as $n \rightarrow \infty$. In order to treat the general case, we can use the L'Hôpital rule:

$$
\begin{gathered}
\lim _{x \rightarrow 0+}(x \cdot \log x)=\lim _{x \rightarrow 0+} \frac{\log x}{\frac{1}{x}}=\lim _{x \rightarrow 0+} \frac{(\log x)^{\prime}}{\left(\frac{1}{x}\right)^{\prime}}= \\
=\lim _{x \rightarrow 0+} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}}=\lim _{x \rightarrow 0+}(-x)=0
\end{gathered}
$$

Alternatively, we can look at the function $f(x)=-x \cdot \log x$. The function f is non-negative for $x \in(0,1]$. By the product rule:

$$
f^{\prime}(x)=-1-\log x>0
$$

for all $x \in(0, \delta)$ when $\delta>0$ is sufficiently small. Hence, f is monotonically increasing on $(0, \delta)$. From the earlier calculations, we know that $f\left(\frac{1}{2^{n}}\right) \rightarrow 0$ as $n \rightarrow \infty$, it follows that $\lim _{x \rightarrow 0+} f(x)=0$. The claim now follows.
b) We can now define the Green's function for a two-dimensional domain Ω and $x_{0} \in \Omega$ to be a function $G\left(\cdot, x_{0}\right): \Omega \backslash\left\{x_{0}\right\} \rightarrow \mathbb{R}$ satisfying the following properties:
i) $G\left(x, x_{0}\right)$ is twice continuously differentiable on $\Omega \backslash\left\{x_{0}\right\}$. Moreover,

$$
\Delta_{x} G\left(x, x_{0}\right)=0 \text { on } \Omega \backslash\left\{x_{0}\right\}
$$

ii) $G\left(x, x_{0}\right)$ for all $x \in \partial \Omega$.
iii) The function $G\left(x, x_{0}\right)-\frac{1}{2 \pi} \log \left|x-x_{0}\right|$ is finite at x_{0} and it is harmonic on all of Ω.
(The choice of the term $-\frac{1}{2 \pi} \log \left|x-x_{0}\right|$ will become clear in part c$)$).
c) Let us fix $x_{0} \in \Omega$. Suppose that $G\left(x, x_{0}\right)$ is as in part b). We let

$$
H\left(x, x_{0}\right):=G\left(x, x_{0}\right)-\frac{1}{2 \pi} \log \left|x-x_{0}\right|
$$

Then $\Delta H=0$ on Ω. We recall that $\Delta u=0$ on Ω. Hence, we obtain, by Green's second identity, :

$$
0=\int_{\partial \Omega}\left(u(x) \frac{\partial H\left(x, x_{0}\right)}{\partial n}-\frac{\partial u}{\partial n} H\left(x, x_{0}\right)\right) d s
$$

We recall from part a) that:

$$
u\left(x_{0}\right)=\frac{1}{2 \pi} \int_{\partial \Omega}\left[u(x) \cdot \frac{\partial}{\partial n} \log \left|x-x_{0}\right|-\frac{\partial u}{\partial n}(x) \cdot \log \left|x-x_{0}\right|\right] d s
$$

We add the previous two identities to deduce that:

$$
u\left(x_{0}\right)=\int_{\partial \Omega}\left[u(x) \cdot \frac{\partial G\left(x, x_{0}\right)}{\partial n}-\frac{\partial u}{\partial n}(x) \cdot G\left(x, x_{0}\right)\right] d s
$$

Since $G\left(x, x_{0}\right)=0$ for $x \in \partial \Omega$, we obtain that:

$$
u\left(x_{0}\right)=\int_{\partial \Omega} u(x) \cdot \frac{\partial G\left(x, x_{0}\right)}{\partial n} d s
$$

Exercise 2. (An averaging property for smooth functions)
Suppose that $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a smooth function which equals zero outside of some ball centered at the origin.
a) Prove that:

$$
\phi(0)=-\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{1}{|x|} \cdot \Delta \phi(x) d x
$$

b) Why is identity in part a) immediate if the function ϕ is assumed to be harmonic?

Solution:

a) Let us assume that $\phi=0$ outside of $B(0, R) \subseteq \mathbb{R}^{3}$ and let $\epsilon>0$ be given. We let:

$$
\Omega_{\epsilon}:=B(0,2 R) \backslash B(0, \epsilon)
$$

Let us recall that, on \mathbb{R}^{3}, one has:

$$
\Delta\left(\frac{1}{|x|}\right)=0
$$

We now apply Green's second identity, noting that ϕ and $\frac{1}{|x|}$ are both smooth on Ω_{ϵ} in order to deduce that:

$$
\int_{\Omega_{\epsilon}}\left[\frac{1}{|x|} \cdot \Delta \phi(x)-\Delta\left(\frac{1}{|x|}\right) \cdot \phi(x)\right] d x=\int_{\partial \Omega_{\epsilon}}\left[\frac{1}{|x|} \cdot \frac{\partial \phi}{\partial n}-\frac{\partial}{\partial n}\left(\frac{1}{|x|}\right) \cdot \phi(x)\right] d S(x) .
$$

We note that $\partial \Omega_{\epsilon}$ consists of two parts: $\partial B(0, \epsilon)$ and $\partial B(0,2 R)$. Since, by assumption, ϕ vanishes near $\partial B(0,2 R)$, it follows that the contribution to the right-hand side from the outer boundary $\partial B(0,2 R)$ equals to zero. Moreover, we know that $\Delta\left(\frac{1}{|x|}\right)=0$ on Ω_{ϵ}. Hence, it follows that:

$$
\int_{\Omega_{\epsilon}} \frac{1}{|x|} \cdot \Delta \phi(x) d x=\int_{\partial B(0, \epsilon)}\left[\frac{1}{|x|} \cdot \frac{\partial \phi}{\partial n}-\frac{\partial}{\partial n}\left(\frac{1}{|x|}\right) \cdot \phi(x)\right] d S(x)
$$

We note that $\Delta \phi=0$ for $|x| \geq 2 R$ and we deduce that:

$$
\int_{|x| \geq \epsilon} \frac{1}{|x|} \cdot \Delta \phi(x) d x=\int_{\partial B(0, \epsilon)}\left[\frac{1}{|x|} \cdot \frac{\partial \phi}{\partial n}-\frac{\partial}{\partial n}\left(\frac{1}{|x|}\right) \cdot \phi(x)\right] d S(x)
$$

We now let $\epsilon \rightarrow 0$. Arguing analogously as in class, we note that the the right-hand side converges to $-4 \pi \phi(0)$. Hence:

$$
\int_{\mathbb{R}^{3}} \frac{1}{|x|} \cdot \Delta \phi(x) d x=-4 \pi \phi(0)
$$

The claim now follows.
Remark: We can interpret this calculation as giving us a rigorous justification of the formula that, on \mathbb{R}^{3}, one has:

$$
\Delta\left(\frac{1}{|x|}\right)=-4 \pi \delta_{0}
$$

where δ_{0} is the Dirac delta function. We would formally define $\Delta\left(\frac{1}{|x|}\right)$ to be the object which, when integrated against ϕ over \mathbb{R}^{3} satisfies the following:

$$
\int_{\mathbb{R}^{3}} \Delta\left(\frac{1}{|x|}\right) \cdot \phi(x) d x=\int_{\mathbb{R}^{3}} \frac{1}{|x|} \cdot \Delta \phi(x) d x
$$

(We are formally integrating by parts twice in the x variable.) From the earlier calculations, we know that this expression equals:

$$
-4 \pi \phi(0)=\int_{\mathbb{R}^{3}}\left(-4 \pi \delta_{0}(x)\right) \cdot \phi(x) d x
$$

Hence:

$$
\int_{\mathbb{R}^{3}} \Delta\left(\frac{1}{|x|}\right) \cdot \phi(x) d x=\int_{\mathbb{R}^{3}}\left(-4 \pi \delta_{0}(x)\right) \cdot \phi(x) d x .
$$

This holds for all functions ϕ which equal zero outside of some ball centered at the origin. Hence, we formally obtain:

$$
\Delta\left(\frac{1}{|x|}\right)=-4 \pi \delta_{0}
$$

b) If ϕ is assumed to be harmonic, then the integral on the right-hand side vanishes. Hence, we need to show that $\phi(0)=0$.

Solution 1:

We can use the mean value property. Namely, we know that $\phi(0)$ equals the average of the function ϕ on $\partial B(0,2 R)$. However, the function ϕ vanishes on $\partial B(0,2 R)$, so $\phi(0)=0$.
Solution 2:
We note that ϕ is a smooth function which vanishes outside of $B(0, R)$. It follows that ϕ is bounded. By Liouville's theorem, it follows that ϕ is constant. Since ϕ is equal to zero outside of $B(0, R)$, it follows that ϕ is equal to zero on all of \mathbb{R}^{3}. In particular $\phi(0)=0$.
Exercise 3. (Uniqueness of Green's functions)
Suppose that $\Omega \subseteq \mathbb{R}^{3}$ is a bounded domain. Suppose that, for given $x_{0} \in \Omega$, the functions $G^{1}\left(x, x_{0}\right)$ and $G^{2}\left(x, x_{0}\right)$, defined for $x \in \Omega \backslash\left\{x_{0}\right\}$, satisfy the conditions of the Green's function stated in class.

Prove that:

$$
G^{1}\left(x, x_{0}\right)=G^{2}\left(x, x_{0}\right)
$$

for all $x \in \Omega \backslash\left\{x_{0}\right\}$. In other words, the Green's function is uniquely defined.

Solution:

It is not possible to directly apply the uniqueness result for the Laplace's equation to the functions $G^{1}\left(x, x_{0}\right)$ and $G^{2}\left(x, x_{0}\right)$ since they are not harmonic on all of Ω. We can, however, modify this approach to prove the claim. Let us consider the functions:

$$
u^{1}(x):=G^{1}\left(x, x_{0}\right)+\frac{1}{4 \pi\left|x-x_{0}\right|}
$$

and

$$
u^{2}(x):=G^{2}\left(x, x_{0}\right)+\frac{1}{4 \pi\left|x-x_{0}\right|} .
$$

By construction, both u^{1} and u^{2} are harmonic on Ω.
Moreover, for $x \in \partial \Omega$, we know that:

$$
G^{1}\left(x, x_{0}\right)=G^{2}\left(x, x_{0}\right)=0
$$

and hence:

$$
u^{1}(x)=u^{2}(x)=\frac{1}{4 \pi\left|x-x_{0}\right|} .
$$

We can now apply the uniqueness result for Laplace's equation to the functions u^{1} and u^{2} in order to deduce that $u^{1}=u^{2}$. From this equality, it follows that:

$$
G^{1}\left(x, x_{0}\right)=G^{2}\left(x, x_{0}\right)
$$

for all $x \in \Omega$.
Exercise 4. (Equipartition of energy for the wave equation) Suppose that $g, h: \mathbb{R} \rightarrow \mathbb{R}$ are smooth functions which vanish outside of some interval of finite length and let $u \in C^{2}(\mathbb{R} \times[0,+\infty))$ solve the initial value problem for the wave equation in one dimension:

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}=0 \text { on } \mathbb{R} \times(0,+\infty) \tag{1}\\
u=g, u_{t}=h \text { on } \mathbb{R} \times\{t=0\} .
\end{array}\right.
$$

Note that, in this case the constant c is assumed to equal 1 .
The kinetic energy of the solution u is defined by:

$$
k(t):=\frac{1}{2} \int_{-\infty}^{+\infty} u_{t}^{2}(x, t) d x
$$

and the potential energy of u is defined by:

$$
p(t):=\frac{1}{2} \int_{-\infty}^{+\infty} u_{x}^{2}(x, t) d x .
$$

a) Show that $k(t)+p(t)$ is constant in time by using the formula from class:

$$
u(x, t)=f(x-t)+g(x+t) .
$$

Hence, the total energy is conserved in time. We recall that, in class, we proved this fact directly by using the equation.
b) Moreover, show that $k(t)=p(t)$ for sufficiently large t. In other words, the total energy gets equally partitioned into the kinetic and potential part over a sufficiently long time.

Solution:

a) For $u(x, t)=f(x-t)+g(x+t)$, we compute:

$$
u_{t}(x, t)=-f^{\prime}(x-t)+g^{\prime}(x+t)
$$

and

$$
u_{x}(x, t)=f^{\prime}(x-t)+g^{\prime}(x+t) .
$$

Let us denote the total energy by $E(t)$. Then, we obtain that:
$E(t)=k(t)+p(t)=\frac{1}{2} \int_{-\infty}^{+\infty}\left(-f^{\prime}(x-t)+g^{\prime}(x+t)\right)^{2} d x+\frac{1}{2} \int_{-\infty}^{+\infty}\left(f^{\prime}(x-t)+g^{\prime}(x+t)\right)^{2} d x=$

$$
\begin{gathered}
=\int_{-\infty}^{+\infty}\left(\left(f^{\prime}(x-t)\right)^{2}+\left(g^{\prime}(x+t)\right)^{2}-f^{\prime}(x-t) \cdot g^{\prime}(x+t)+f^{\prime}(x-t) \cdot g^{\prime}(x+t)\right) d x= \\
=\int_{-\infty}^{+\infty}\left(f^{\prime}(x-t)\right)^{2} d x+\int_{-\infty}^{+\infty}\left(g^{\prime}(x+t)\right)^{2} d x= \\
=\int_{-\infty}^{+\infty}\left(f^{\prime}(x)\right)^{2} d x+\int_{-\infty}^{+\infty}\left(g^{\prime}(x)\right)^{2} d x=E(0)
\end{gathered}
$$

Hence, the energy is conserved in time.
b) We calculate as before:

$$
k(t)=\frac{1}{2} \int_{-\infty}^{+\infty}\left(\left(f^{\prime}(x-t)\right)^{2}+\left(g^{\prime}(x+t)\right)^{2}-2 f^{\prime}(x-t) \cdot g^{\prime}(x+t)\right) d x
$$

and:

$$
p(t)=\frac{1}{2} \int_{-\infty}^{+\infty}\left(\left(f^{\prime}(x-t)\right)^{2}+\left(g^{\prime}(x+t)\right)^{2}+2 f^{\prime}(x-t) \cdot g^{\prime}(x+t)\right) d x
$$

We note that the integrands are the same when:

$$
f^{\prime}(x-t) \cdot g^{\prime}(x+t)=0
$$

We recall that the functions f and g equal zero outside of the interval $[-R, R]$ for some $R>0$. In particular $f^{\prime}=g^{\prime}=0$ outside of $[-R, R]$.

We note that $(x+t)-(x-t)=2 t$. Hence, if $t>R$, it is not possible for both $x-t$ and $x+t$ to be in $[-R, R]$. In particular, it follows that either $f^{\prime}(x-t)=0$ or $g^{\prime}(x+t)=0$, and so $f^{\prime}(x-t) \cdot g^{\prime}(x+t)=0$ for all $x \in \mathbb{R}$, whenever $t>R$.

Hence, we may conclude that:

$$
k(t)=p(t)
$$

for all $t>R$, where R is defined as above.

