
MATH 425, HOMEWORK 7, SOLUTIONS

Each problem is worth 10 points.

Exercise 1. (An alternative derivation of the mean value property in 3D)
Suppose that u is a harmonic function on a domain Ω ⊆ R3 and suppose that B(x,R) ⊆ Ω. We
want to show that:

u(x) =
1

4πr2

∫
∂B(x,r)

u(y)dS(y)

for all r ∈ (0, R). This is the mean value property for harmonic functions in three dimensions. In
class, we showed the analogous claim in two dimensions by using Poisson’s formula. In this exercise,
we outline how to give an alternative proof of the mean value property.

a) Define the function g : (0, R)→ R by:

g(r) :=
1

4πr2

∫
∂B(x,r)

u(y) dS(y).

By using a change of variables which takes B(x,R) to B(0, 1), show that:

g(r) =
1

4π

∫
∂B(0,1)

u(x+ rz) dS(z).

(In this way the domain of integration no longer depends on r.)

b) Show that:

g′(r) =
1

4πr2

∫
∂B(x,r)

∇u(y) · ~n(y) dS(y)

where ~n(y) is the outward-pointing unit normal vector to ∂B(x, r) at the point y ∈ ∂B(x, r).
[HINT: Differentiate under the integral sign and then undo the change of variables in a).]

d) Use the Divergence Theorem and the Laplace equation to deduce that g′(r) = 0.

e) What is limr→0 g(r)? (Recall that u is smooth. In particular, it is continuous).

f) Conclude the proof of the mean value property.

g) [Extra Credit (2 points)] Show that if u is assumed to be continuous and subharmonic on Ω
(i.e. ∆u ≥ 0 on Ω), then for all B(x,R) ⊆ Ω and for all r ∈ (0, R), the following holds:

u(x) ≤ 1

4πr2

∫
∂B(x,r)

u(y) dS(y).

In other words, the value of a subharmonic function at a point is bounded from above by the average
of this function on a sphere centered at this point.

Solution:

a) We let:

g(r) :=
1

4πr2

∫
∂B(x,r)

u(y) dS(y).
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If we use the change of variables y = x+ rz, then the ball B(x, r) in the y-variable goes to the ball
B(0, 1) in the z-variable. Moreover, dS(y) = r2 dS(z). Hence:

g(r) =
1

4π

∫
∂B(0,1)

u(x+ rz) dS(z).

b) We differentiate under the integral sign and we use the Chain Rule to deduce that:

g′(r) =
1

4π

∫
∂B(0,1)

∇u(x+ rz) · z dS(z).

We recall that z = y−x
r , which is the outward pointing unit normal vector to ∂B(x, r) at the point

y ∈ ∂B(x, r). We change variables back to y and we recall that: dS(z) = 1
r2 dS(y) to deduce that:

g′(r) =
1

4πr2

∫
∂B(x,r)

∇u(y) · ~n(y) dS(y)

as was claimed.

c) We use the Divergence Theorem to deduce that:

g′(r) =
1

4πr2

∫
B(x,r)

∆u(y) dy.

Since ∆u = 0, it follows that g′(r) = 0.

d) Since u is continuous, it follows that limr→0 g(r) = u(x).

e) Combining parts c) and d), it follows that g(r) = u(x) for all r ∈ (0, R).

f) Suppose now that u is subharmonic, i.e. ∆u ≥ 0. We again define

g(r) :=
1

4π2

∫
∂B(x,r)

u(y) dS(y).

We argue as before to deduce that:

g′(r) =
1

4πr2

∫
B(x,r)

∆u(y) dy ≥ 0.

Hence, in this case, g is an increasing function of r. Again, we know that, by continuity, limr→0 g(r) =
u(x). Hence, it follows that, for all r ∈ (0, R), it holds that:

u(x) ≤ g(r) =
1

4π2

∫
∂B(x,r)

u(y) dS(y). �

Remark: This approach has the advantage that it is computationally a bit simpler than the
approach based on Poisson’s formula. Moreover, as we note from part e), it can be applied in the
context of subharmonic functions, which was not the case before. The drawback of this approach
in comparison to the Poisson formula is the fact that it can only tell us the value of the function
at the center of the ball whereas the Poisson formula tells us the value of the function at all points
inside the ball.

Exercise 2. (An application of the maximum principle for subharmonic functions)
Suppose that Ω ⊆ R2 is a bounded domain. Suppose that v : Ω→ R is continuous and suppose that,
for some constant C ∈ R:

vxx + vyy = C on Ω.

a) Show that the function u = |∇v|2 is subharmonic on Ω.
b) Deduce that u achieves its maximum on ∂Ω.
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Solution:

a) We compute:

ux = (v2x + v2y)x = 2vxvxx + 2vyvyx.

uxx = (2vxvxx + 2vyvyx)x = 2v2xx + 2vxvxxx + 2v2yx + 2vyvyxx.

uy = (v2x + v2y)y = 2vxvxy + 2vyvyy.

uyy = (2vxvxy + 2vyvyy)y = 2v2xy + 2vxvxyy + 2v2yy + 2vyvyyy.

It follows that:

∆u = 2v2xx + 4v2xy + 2v2yy + 2vx(vxxx + vxyy) + 2vy(vyxx + vyyy)

Since vxx + vyy = C, we can differentiate both sides with respect to x and with respect to y
respectively to deduce that:

vxxx + vxyy = vyxx + vyyy = 0.

In particular, it follows that:

∆u = 2v2xx + 4v2xy + 2v2yy ≥ 0.

Hence, u is subharmonic.

b) Since u is subharmonic, we can apply the result of Exercise 3 from Homework Assignment 6
to deduce that u achieves its maximum on ∂Ω. �

Exercise 3. (Poisson’s equation on a ball in R2)
Solve the Poisson’s equation on the ball B(0, 1) ⊆ R2:{

∆u = y, on B(0, 1)

u = 1 on ∂B(0, 1).

We will see that it is possible to use polar coordinates and separate variables to solve this problem.
In general, we look for a solution of the form:

u(r, θ) =
1

2
A0(r) +

∞∑
n=1

{
An(r) cos(nθ) +Bn(r) sin(nθ)

}
where A0(r), A1(r), B1(r), . . . are now functions of r. We are assuming that u is bounded near the
origin.

a) Write the function y and the Laplace operator in polar coordinates (by the formula from class)
and deduce that the functions A0, A1, B1, . . . satisfy appropriate ODE initial value problems.

b) Solve these initial value problems and substitute the solutions into the formula for u. Write
the answer as a function of x and y.

[HINT: When solving for B1, we get the ODE r2B′′1 +rB′1−B1 = r3. This ODE has a particular
solution of the form B1(r) = Cr3. Use this fact to obtain the general solution to the ODE.]

Solution:

a) We note that y = r sin θ in polar coordinates. Moreover, we recall the formula from class:

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
.

In particular, it follows that:

∆u =
(1

2
A′′0(r)+

1

r
A′0(r)

)
+

∞∑
n=1

{(
A′′n+

1

r
A′n−

1

r2
n2An

)
cos(nθ)+

(
B′′n+

1

r
B′n−

1

r2
n2Bn

)
sin(nθ)

}
= y sin θ
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Consequently:
1

2
A′′0(r) +

1

r
A′0(r) = 0

A′′n +
1

r
A′n −

1

r2
n2An = 0, for n ≥ 1.

B′′1 +
1

r
B′1 −

1

r2
B1 = r.

B′′n +
1

r
B′n −

1

r2
n2Bn = 0, for n ≥ 2.

The boundary conditions imply that:

A0(1) = 2.

An(1) = Bn(1) = 0, for n ≥ 1.

Thus, we obtain the following ODE initial value problems:{
r2A′′0(r) + rA′0(r) = 0, for r ∈ (0, 1)

A0(1) = 2.

For n ≥ 1: {
r2A′′n(r) + rA′n(r)− n2An(r) = 0, for r ∈ (0, 1)

An(0) = 0.{
r2B′′1 + rB1(r)−B1(r) = r3, for r ∈ (0, 1)

B1(0) = 0.

For n ≥ 2: {
r2B′′n + rB′n − n2Bn = 0, for r ∈ (0, 1)

Bn(0) = 0.

b) From class, we know that A0 has to be constant (there is no log r term since we are assum-
ing that our solution is bounded near the origin). Hence:

A0(r) = 2 for all r ∈ (0, 1).

Moreover, we know that An(r) = Cnr
n, for n ≥ 1. Since An(1) = 0, it follows that, for all n ≥ 1,

we obtain:

An(r) = 0 for all r ∈ (0, 1).

Similarly, if n ≥ 2, we deduce that:

Bn(r) = 0 for all r ∈ (0, 1).

We need to find B1(r). We look for a particular solution B1,p to the ODE of the form B1,p(r) = Cr3.
Then:

r2B′′1,p + rB′1,p −B1,p = 8Cr3

which we assume equals r3. Hence, it follows that a particular solution is given by:

B1,p =
1

8
r3.

The solution to the homogeneous equation r2B′′1,h + rB′1,h −B1,h = 0 is given by:

B1,h(r) = λr

(we are looking only for solutions which are bounded near r = 0).
In particular, since B1(1) = 0, it follows that λ = − 1

8 and:

B1(r) =
1

8

(
r3 − r

)
.
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Putting everything together, it follows that:

u(r, θ) = 1 +
1

8

(
r3 − r) sin θ.

Since y = r sin θ, we can write this in Euclidean coordinates as:

u(x, y) = 1 +
1

8
(x2 + y2 − 1) · y . �


