MATH 425, HOMEWORK 6, SOLUTIONS

Exercise 1. (Uniqueness for the Poisson equation by using the energy method)
Let $\Omega \subseteq \mathbb{R}^{3}$ be a bounded domain. We assume that for all $f: \Omega \rightarrow \mathbb{R}$ and for all $g: \partial \Omega \rightarrow \mathbb{R}$, the boundary value problem:

$$
\left\{\begin{array}{l}
\Delta u=f \text { on } \Omega \\
u=g \text { on } \partial \Omega
\end{array}\right.
$$

admits a solution.
By using the energy method, show that this solution is uniquely determined if we are given f and g.

Solution:

We suppose that u_{1} and u_{2} solve:

$$
\left\{\begin{array}{l}
\Delta u_{1}=f \text { on } \Omega \\
u_{1}=g \text { on } \partial \Omega
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\Delta u_{2}=f \text { on } \Omega \\
u_{2}=g \text { on } \partial \Omega
\end{array}\right.
$$

Let $w:=u_{1}-u_{2}$. Then, w solves:

$$
\left\{\begin{array}{l}
\Delta w=0 \text { on } \Omega \\
w=0 \text { on } \partial \Omega
\end{array}\right.
$$

We want to argue that $w=0$ because then it follows that $u_{1}=u_{2}$.
Since $\Delta w=0$, it follows that:

$$
\int_{\Omega} \Delta w \cdot w d x d y d z=0
$$

We can use Green's First Identity from multivariable calculus to deduce that:

$$
\int_{\Omega}-|\nabla w|^{2} d x d y d z+\int_{\partial \Omega} w \nabla w \cdot \vec{n} d S=\int_{\Omega} \Delta w \cdot w d x d y d z=0
$$

Here, \vec{n} is the outward pointing unit normal vector to $\partial \Omega$. Since $w=0$ on $\partial \Omega$, it follows that:

$$
\int_{\Omega}-|\nabla w|^{2} d x d y d z=0
$$

In particular, we obtain:

$$
\nabla w=0 \text { on } \Omega .
$$

Hence, w is constant (on each connected component) of Ω. Since $w=0$ on $\partial \Omega$, it follows that $w=0$, as was claimed.

Exercise 2. (A necessary condition for existence of solutions)
Suppose that $\Omega \subseteq \mathbb{R}^{3}$ is a bounded domain and suppose that $f: \Omega \rightarrow \mathbb{R}$ and $g: \partial \Omega \rightarrow \mathbb{R}$. Consider the boundary value problem:

$$
\left\{\begin{array}{l}
\Delta u=f \text { on } \Omega \\
\frac{\partial u}{\partial n}=g \text { on } \partial \Omega
\end{array}\right.
$$

Show that the above boundary value problem doesn't have a solution unless:

$$
\int_{\Omega} f d x d y d z=\int_{\partial \Omega} g d S
$$

Here, we recall that $\frac{\partial u}{\partial n}:=\nabla u \cdot \vec{n}$, where \vec{n} is the outward pointing unit normal vector to $\partial \Omega$.
Solution: Suppose that u solves the given boundary value problem. We then observe that:

$$
\int_{\Omega} f d x d y d z=\int_{\Omega} \Delta u d x d y d z
$$

Let us note that $\Delta u=\div \nabla u$. Hence, by the Divergence Theorem, it follows that:

$$
\int_{\Omega} \Delta u d x d y d z=\int_{\partial \Omega} \nabla u \cdot \vec{n} d S
$$

We know that:

$$
\nabla \cdot \vec{n}=\frac{\partial u}{\partial n}=g
$$

Hence:

$$
\int_{\partial \Omega} \nabla u \cdot \vec{n} d S=\int_{\partial \Omega} g d S
$$

Combining the above equalities, it follows that:

$$
\int_{\Omega} f d x d y d z=\int_{\partial \Omega} g d S
$$

Exercise 3. (Subharmonic functions)
We say that a function $u=u(x)$ is subharmonic if $\Delta u \geq 0$. In particular, every harmonic function is subharmonic. In this exercise, we will study the maximum principle for subharmonic functions.
a) Suppose that $\Omega \subseteq \mathbb{R}^{n}$ is a bounded domain and suppose that u is a subharmonic function on
Ω. Furthermore, assume that u extends to a continuous function on $\bar{\Omega}=\Omega \cup \partial \Omega$.
Show that u achieves its maximum value on $\partial \Omega$. In other words:

$$
\max _{\bar{\Omega}} u=\max _{\partial \Omega} u
$$

b) Fix $n=2$ and look at the function $u\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$ on the closed unit ball

$$
B(0,1)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, x_{1}^{2}+x_{2}^{2} \leq 1\right\} .
$$

Calculate Δu and deduce that u is subharmonic.
c) Check that the maximum principle holds for the function u defined in part b) when the domain Ω is the open unit ball: $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, x_{1}^{2}+x_{2}^{2}<1\right\}$.
d) For the function u defined in part b), find where it achieves its minimum on $B(0,1)$. Is this minimum achieved on the boundary?

Solution:

a) If u were to achieve its maximum at an interior point $x_{0} \in \Omega$, we would know that $u_{x_{j} x_{j}}\left(x_{0}\right) \leq 0$ for all $j=1,2, \ldots, n$. In particular, we would obtain that $\Delta u\left(x_{0}\right) \leq 0$. This doesn't immediately lead to a contradiction since $\Delta u\left(x_{0}\right)$ can equal zero.

We modify this argument by considering a good approximation of u. Given $\epsilon>0$, we define the function $v^{\epsilon}: \Omega \rightarrow \mathbb{R}$ by:

$$
v^{\epsilon}(x):=u(x)+\epsilon|x|^{2}
$$

We note that v^{ϵ} extends to a continuous function on $\bar{\Omega}=\Omega \cup \partial \Omega$ for all $\epsilon>0$.

We observe that:

$$
\Delta v^{\epsilon}=\Delta u+\Delta\left(\epsilon|x|^{2}\right)=\Delta u+2 \epsilon n \geq 2 \epsilon n>0
$$

In particular, the above argument tells us that v^{ϵ} must achieve its maximum on $\bar{\Omega}$ on $\partial \Omega$. We note that the maximum exists since Ω is assumed to be bounded and since v^{ϵ} extends to a continuous function on $\bar{\Omega}$. Given $\epsilon>0$, let us denote by x^{ϵ} the element of $\partial \Omega$ at which v^{ϵ} achieves its maximum. Moreover, let us denote by x_{M} the point such that:

$$
u\left(x_{M}\right)=\max _{y \in \partial \Omega} u(y)
$$

In other words, x_{M} is the point on $\partial \Omega$ on which u achieves its maximum. As before, we note that this maximum is achieved.

Let us fix a point $x \in \Omega$. We want to show that:

$$
\begin{equation*}
u(x) \leq u\left(x_{M}\right) \tag{1}
\end{equation*}
$$

We know that, for all $\epsilon>0$:

$$
\begin{equation*}
v^{\epsilon}(x) \leq v^{\epsilon}\left(x_{\epsilon}\right) \tag{2}
\end{equation*}
$$

Let us note that, by construction of v^{ϵ} and (2), it follows that:

$$
u(x)=v^{\epsilon}(x)-\epsilon|x|^{2} \leq v^{\epsilon}\left(x_{\epsilon}\right)-\epsilon|x|^{2}=u\left(x_{\epsilon}\right)+\epsilon\left|x_{\epsilon}\right|^{2}-\epsilon|x|^{2}
$$

Since $x_{\epsilon} \in \partial \Omega$, we know by construction of x_{M} that:

$$
u\left(x_{\epsilon}\right) \leq u\left(x_{M}\right)
$$

Moreover, since Ω is bounded, we note that there exists $L>0$ such that $|y| \leq L$ for all $y \in \bar{\Omega}$. Consequently:

$$
\begin{equation*}
u(x) \leq u\left(x_{M}\right)+\epsilon\left(L^{2}-|x|^{2}\right) \tag{3}
\end{equation*}
$$

We note that $L^{2}-|x|^{2} \geq 0$, so we can't immediately deduce the claim form (3). However, we can let $\epsilon \rightarrow 0$ in (3) and deduce that:

$$
u(x) \leq u\left(x_{M}\right)
$$

as was claimed.
b) We compute that:

$$
\Delta u=\Delta\left(x_{1}^{2}+x_{2}^{2}\right)=\left(x_{1}^{2}\right)_{x_{1} x_{1}}+\left(x_{2}^{2}\right)_{x_{2} x_{2}}=2+2=4>0 .
$$

It follows that u is subharmonic.
c) We note that, on a circle of radius r, the function u equals r^{2}. In particular, if we look at $\bar{\Omega}$, the function u has maximum 1 which is achieved on the circle of radius 1 , which is the boundary of Ω.
d) The function u has a minimum at the origin, where it equals zero. The origin doesn't lie on the boundary of Ω.

