
MATH 425, HOMEWORK 6, SOLUTIONS

Exercise 1. (Uniqueness for the Poisson equation by using the energy method)
Let Ω ⊆ R3 be a bounded domain. We assume that for all f : Ω → R and for all g : ∂Ω → R, the
boundary value problem: {

∆u = f on Ω

u = g on ∂Ω

admits a solution.
By using the energy method, show that this solution is uniquely determined if we are given f and g.

Solution:
We suppose that u1 and u2 solve: {

∆u1 = f on Ω

u1 = g on ∂Ω

and {
∆u2 = f on Ω

u2 = g on ∂Ω

Let w := u1 − u2. Then, w solves: {
∆w = 0 on Ω

w = 0 on ∂Ω

We want to argue that w = 0 because then it follows that u1 = u2.
Since ∆w = 0, it follows that: ∫

Ω

∆w · w dxdy dz = 0

We can use Green’s First Identity from multivariable calculus to deduce that:∫
Ω

−|∇w|2 dx dy dz +

∫
∂Ω

w∇w · ~n dS =

∫
Ω

∆w · w dxdy dz = 0.

Here, ~n is the outward pointing unit normal vector to ∂Ω. Since w = 0 on ∂Ω, it follows that:∫
Ω

−|∇w|2 dx dy dz = 0.

In particular, we obtain:

∇w = 0 on Ω.

Hence, w is constant (on each connected component) of Ω. Since w = 0 on ∂Ω, it follows that
w = 0, as was claimed. �

Exercise 2. (A necessary condition for existence of solutions)
Suppose that Ω ⊆ R3 is a bounded domain and suppose that f : Ω → R and g : ∂Ω → R. Consider
the boundary value problem: {

∆u = f on Ω
∂u
∂n = g on ∂Ω.
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Show that the above boundary value problem doesn’t have a solution unless:∫
Ω

f dx dy dz =

∫
∂Ω

g dS

Here, we recall that ∂u
∂n := ∇u · ~n, where ~n is the outward pointing unit normal vector to ∂Ω.

Solution: Suppose that u solves the given boundary value problem. We then observe that:∫
Ω

f dx dy dz =

∫
Ω

∆u dx dy dz.

Let us note that ∆u = ÷∇u. Hence, by the Divergence Theorem, it follows that:∫
Ω

∆u dx dy dz =

∫
∂Ω

∇u · ~n dS

We know that:

∇ · ~n =
∂u

∂n
= g.

Hence: ∫
∂Ω

∇u · ~n dS =

∫
∂Ω

g dS.

Combining the above equalities, it follows that:∫
Ω

f dx dy dz =

∫
∂Ω

g dS. �

Exercise 3. (Subharmonic functions)
We say that a function u = u(x) is subharmonic if ∆u ≥ 0. In particular, every harmonic function
is subharmonic. In this exercise, we will study the maximum principle for subharmonic functions.

a) Suppose that Ω ⊆ Rn is a bounded domain and suppose that u is a subharmonic function on
Ω. Furthermore, assume that u extends to a continuous function on Ω̄ = Ω ∪ ∂Ω.
Show that u achieves its maximum value on ∂Ω. In other words:

max
Ω̄

u = max
∂Ω

u.

b) Fix n = 2 and look at the function u(x1, x2) = x2
1 + x2

2 on the closed unit ball

B(0, 1) = {(x1, x2) ∈ R2, x2
1 + x2

2 ≤ 1}.

Calculate ∆u and deduce that u is subharmonic.

c) Check that the maximum principle holds for the function u defined in part b) when the do-
main Ω is the open unit ball: {(x1, x2) ∈ R2, x2

1 + x2
2 < 1}.

d) For the function u defined in part b), find where it achieves its minimum on B(0, 1). Is this
minimum achieved on the boundary?

Solution:

a) If u were to achieve its maximum at an interior point x0 ∈ Ω, we would know that uxjxj (x0) ≤ 0
for all j = 1, 2, . . . , n. In particular, we would obtain that ∆u(x0) ≤ 0. This doesn’t immediately
lead to a contradiction since ∆u(x0) can equal zero.

We modify this argument by considering a good approximation of u. Given ε > 0, we define the
function vε : Ω→ R by:

vε(x) := u(x) + ε|x|2.
We note that vε extends to a continuous function on Ω = Ω ∪ ∂Ω for all ε > 0.
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We observe that:
∆vε = ∆u+ ∆(ε|x|2) = ∆u+ 2εn ≥ 2εn > 0.

In particular, the above argument tells us that vε must achieve its maximum on Ω on ∂Ω. We note
that the maximum exists since Ω is assumed to be bounded and since vε extends to a continuous
function on Ω. Given ε > 0, let us denote by xε the element of ∂Ω at which vε achieves its maximum.
Moreover, let us denote by xM the point such that:

u(xM ) = max
y∈∂Ω

u(y).

In other words, xM is the point on ∂Ω on which u achieves its maximum. As before, we note that
this maximum is achieved.

Let us fix a point x ∈ Ω. We want to show that:

(1) u(x) ≤ u(xM ).

We know that, for all ε > 0:

(2) vε(x) ≤ vε(xε).
Let us note that, by construction of vε and (2), it follows that:

u(x) = vε(x)− ε|x|2 ≤ vε(xε)− ε|x|2 = u(xε) + ε|xε|2 − ε|x|2.
Since xε ∈ ∂Ω, we know by construction of xM that:

u(xε) ≤ u(xM ).

Moreover, since Ω is bounded, we note that there exists L > 0 such that |y| ≤ L for all y ∈ Ω.
Consequently:

(3) u(x) ≤ u(xM ) + ε (L2 − |x|2).

We note that L2 − |x|2 ≥ 0, so we can’t immediately deduce the claim form (3). However, we can
let ε→ 0 in (3) and deduce that:

u(x) ≤ u(xM )

as was claimed.

b) We compute that:

∆u = ∆(x2
1 + x2

2) = (x2
1)x1x1

+ (x2
2)x2x2

= 2 + 2 = 4 > 0.

It follows that u is subharmonic.

c) We note that, on a circle of radius r, the function u equals r2. In particular, if we look at
Ω, the function u has maximum 1 which is achieved on the circle of radius 1, which is the boundary
of Ω.

d) The function u has a minimum at the origin, where it equals zero. The origin doesn’t lie on
the boundary of Ω. �


