MATH 425, HOMEWORK 5, SOLUTIONS

Exercise 1. (Uniqueness for the heat equation on \mathbb{R})
Suppose that the functions $u_{1}, u_{2}: \mathbb{R}_{x} \times \mathbb{R}_{t} \rightarrow \mathbb{R}$ solve:

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-k \cdot \partial_{x}^{2} u_{1}=0, x \in \mathbb{R}, t>0 \\
u_{1}(x, 0)=\phi(x), x \in \mathbb{R}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\partial_{t} u_{2}-k \cdot \partial_{x}^{2} u_{2}=0, x \in \mathbb{R}, t>0 \\
u_{2}(x, 0)=\phi(x), x \in \mathbb{R}
\end{array}\right.
$$

for some function $\phi: \mathbb{R} \rightarrow \mathbb{R}$.
Suppose furthermore that there exists constants $C, A>0$ such that for all $x \in \mathbb{R}$ and for all $t>0$, one has:

$$
\left|u_{1}(x, t)\right| \leq C e^{A x^{2}} \text { and }\left|u_{2}(x, t)\right| \leq C e^{A x^{2}}
$$

Using the Global Maximum Principle (which was stated in class), show that:

$$
u_{1}=u_{2}
$$

(Here, one is allowed to use the result of the Global Maximum Principle, even though we didn't give the details of its proof in class.)

This type of result is called Conditional Uniqueness. In other words, we know that solutions are unique in the class of objects satisfying some additional condition, which in this case is a bound of the type $|u(x, t)| \leq C e^{A x^{2}}$.

Solution: Let $w(x, t):=u_{1}(x, t)-u_{2}(x, t)$. We want to show that $w(x, t)=0$ for all $x \in \mathbb{R}$ and for all $t>0$.

Let us note that w solves:

$$
\left\{\begin{array}{l}
\partial_{t} w-k \cdot \partial_{x}^{2} w=0, x \in \mathbb{R}, t>0 \tag{1}\\
w(x, 0)=0, x \in \mathbb{R}
\end{array}\right.
$$

Moreover, by the triangle inequality, we note that, for all $x \in \mathbb{R}$ and for all $t>0$:

$$
|w(x, t)|=\left|u_{1}(x, t)-u_{2}(x, t)\right| \leq\left|u_{1}(x, t)\right|+\left|u_{2}(x, t)\right| \leq 2 C e^{A x^{2}}
$$

by using the assumptions on u_{1} and u_{2}. In particular, it follows that w belongs to the class of functions for which we can apply the global maximum principle (the fact that the constant C gets replaced by $2 C$ doesn't matter here). Hence, we can apply the global maximum principle to (2) in order to deduce that w achieves its maximum and minimum for $t=0$. Since $w(x, 0)=0$ for all $x \in \mathbb{R}$, it follows that w is identically equal to zero. The claim now follows.
Exercise 2. (The Global Maximum Principle in a special case)
In this Exercise, we will give a proof of a special case of the Global Maximum Principle. Suppose that

$$
\left\{\begin{array}{l}
u_{t}-k u_{x x}=0, x \in \mathbb{R}, t>0 \\
u(x, 0)=\phi(x), x \in \mathbb{R}
\end{array}\right.
$$

for some bounded continuous function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ which equals zero outside of $[0,1]$.
Suppose moreover that the solution u is bounded from above, i.e. that there exists $C>0$ such that:

$$
u(x, t) \leq C \text { for all } x \in \mathbb{R}, t>0
$$

Let M_{0} denote the maximum of ϕ (which exists by the assumptions on ϕ).
We want to prove that:

$$
\begin{equation*}
u(x, t) \leq M_{0} \text { for all } x \in \mathbb{R}, t>0 \tag{2}
\end{equation*}
$$

a) Fix $T>0, L>0$ and consider the rectangle: $Q_{L, T}:=[-L, L]_{x} \times[0, T]_{t}$. Define on $Q_{T, L}$ the function:

$$
w(x, t):=\frac{2 C}{L^{2}} \cdot\left(\frac{x^{2}}{2}+k t\right)+M_{0}
$$

Check that:

$$
w_{t}-k w_{x x}=0
$$

b) Explain how we can deduce that:

$$
w \geq u \text { on } Q_{L, T}
$$

[HINT: Recall the comparison results from the previous homework assignment.]
c) Fix $\left(x_{0}, t_{0}\right)$. By using the result from part b), and by letting L tend to infinity, deduce the bound (2).

Solution:

a) We compute:

$$
w_{t}(x, t)=\frac{2 C k}{L^{2}}
$$

and

$$
w_{x x}(x, t)=\frac{2 C}{L^{2}}
$$

It immediately follows that $w_{t}-k w_{x x}=0$.
b) By using Exercise 3a) from Homework assignment 4, it suffices to check that $w \geq u$ for $t=0$ and for $x= \pm L$. More precisely, we look at the point:

- $(x, 0)$ for $-L \leq x \leq L$. Then:

$$
w(x, 0)=\frac{C x^{2}}{L^{2}}+M_{0} \geq M_{0} \geq \phi(x)=u(x, 0)
$$

Here, we used the assumption that M_{0} was the maximum of ϕ.

- (L, t) for $0 \leq t \leq T$. Here:

$$
w(L, t)=C+\frac{2 C k t}{L^{2}}+M_{0} \geq C \geq u(L, t)
$$

Here, we used the assumption that u was bounded from above by C.

- $(-L, t)$ for $0 \leq t \leq T$. Since w is even in the x variable, this case is analogous to the previous one.

It follows that:

$$
w \geq u \text { on } Q_{L, T}
$$

c) We fix $\left(x_{0}, t_{0}\right) \in \mathbb{R} \times(0,+\infty)$. Let us find $L, T>0$ sufficiently large such that $\left(x_{0}, t_{0}\right) \in Q_{L, T}$. From part b), it follows that:

$$
u\left(x_{0}, t_{0}\right) \leq \frac{2 C}{L^{2}} \cdot\left(\frac{x_{0}^{2}}{2}+k t_{0}\right)+M_{0}
$$

We can now let $L \rightarrow \infty$ in the above inequality and we deduce that:

$$
u\left(x_{0}, t_{0}\right) \leq M_{0}
$$

(We note that we didn't need to let $T \rightarrow \infty$ in this step.) Since $\left(x_{0}, t_{0}\right)$ is arbitrary, the claim follows.

Exercise 3. (Separation of variables for an inhomogeneous PDE)
a) Solve the following boundary value problem by using the method of separation of variables:

$$
\left\{\begin{array}{l}
u_{t}-u_{x x}=\sin (2 \pi x)+\sin (3 \pi x), 0<x<1, t>0 \\
u(x, 0)=0,0 \leq x \leq 1 \\
u(0, t)=u(1, t)=0, t>0
\end{array}\right.
$$

b) Solve the more general problem:

$$
\left\{\begin{array}{l}
v_{t}-v_{x x}=m \cdot v+\sin (2 \pi x)+\sin (3 \pi x), 0<x<1, t>0 \\
v(x, 0)=0,0 \leq x \leq 1 \\
v(0, t)=v(1, t)=0, t>0
\end{array}\right.
$$

for $m \in \mathbb{R}$ a constant.

Solution:

Let us note that, by uniqueness, there is only one solution to each given boundary value problem. Hence, in both parts a) and b), we need to construct a solution and this solution will then be unique.
a) We look for a solution of the form:

$$
\begin{equation*}
u(x, t)=A(t) \cdot \sin (2 \pi x)+B(t) \cdot \sin (3 \pi x) \tag{3}
\end{equation*}
$$

The reason why we look for such a solution is that the right-hand side of the equation contains the $\sin (2 \pi x)$ and $\sin (3 \pi x)$ terms. We expect that these are the only frequencies that will be present in the solution. In the form of u that we are looking for, for each fixed t, the function $u(x, t)$ has a Fourier sine expansion in terms of $\sin (2 \pi x)$ and $\sin (3 \pi x)$. The coefficients will be functions of t.

Let us note that, for u defined as in (3), the boundary conditions $u(0, t)=u(1, t)=0$ are satisfied since $\sin (0)=\sin (2 \pi)=\sin (3 \pi)=0$.

Our goal is to choose $A(t)$ and $B(t)$ such that u solves the inhomogeneous heat equation. We compute:

$$
u_{t}-u_{x x}=\left\{A^{\prime}(t)+4 \pi^{2} A(t)\right\} \cdot \sin (2 \pi x)+\left\{B^{\prime}(t)+9 \pi^{2} B(t)\right\} \cdot \sin (3 \pi x)
$$

which, by the equation, equals:

$$
\sin (2 \pi x)+\sin (3 \pi x)
$$

We can now equate coefficients of $\sin (2 \pi x)$ and $\sin (3 \pi x)$ to deduce:

$$
\left\{\begin{array}{l}
A^{\prime}(t)+4 \pi^{2} A(t)=1 \tag{4}\\
B^{\prime}(t)+9 \pi^{2} B(t)=1
\end{array}\right.
$$

Hence, the condition (4) guarantees that the function u defined in (3) solves the PDE.
We now need to solve for $A(t)$ and $B(t)$.
By the condition that $u(x, 0)=A(0) \cdot \sin (2 \pi x)+B(0) \cdot \sin (3 \pi x)$, it follows that $A(0)=B(0)$.
Hence, we need to solve the following initial value problem to determine $A(t)$:

$$
\left\{\begin{array}{l}
A^{\prime}(t)+4 \pi^{2} A(t)=1 \\
A(0)=0
\end{array}\right.
$$

We solve the ODE by multiplying with the integrating factor $e^{4 \pi^{2} t}$. The ODE then becomes:

$$
e^{4 \pi^{2} t} A^{\prime}(t)+4 \pi^{2} e^{4 \pi^{2} t} A(t)=e^{4 \pi^{2} t}
$$

i.e.

$$
\left(e^{4 \pi^{2} t} A(t)\right)^{\prime}=e^{4 \pi^{2} t}
$$

Hence:

$$
e^{4 \pi^{2} t} A(t)=A_{0}+\frac{1}{4 \pi^{2}} e^{4 \pi^{2} t}
$$

We note that $A(0)=0$ implies that $A_{0}=-\frac{1}{4 \pi^{2}}$. Consequently:

$$
A(t)=\frac{1}{4 \pi^{2}} \cdot\left\{1-e^{-4 \pi^{2} t}\right\}
$$

Similarly, we obtain:

$$
B(t)=\frac{1}{9 \pi^{2}} \cdot\left\{1-e^{-9 \pi^{2} t}\right\}
$$

It follows that:

$$
u(x, t)=\frac{1}{4 \pi^{2}} \cdot\left\{1-e^{-4 \pi^{2} t}\right\} \cdot \sin (2 \pi x)+\frac{1}{9 \pi^{2}} \cdot\left\{1-e^{-9 \pi^{2} t}\right\} \cdot \sin (3 \pi x)
$$

b) Let us look at the function $w(x, t):=e^{-m t} v(x, t)$. Then, we note that:

$$
w_{t}-w_{x x}=e^{-m t} \cdot\left\{v_{t}-v_{x x}-m v\right\}
$$

Hence, if we multiply the equation for v and the initial and boundary conditions by $e^{-m t}$ (for $t=0$, we will just multiply everything by 1), it follows that w solves the problem:

$$
\left\{\begin{array}{l}
w_{t}-w_{x x}=e^{-m t} \cdot \sin (2 \pi x)+e^{-m t} \cdot \sin (3 \pi x), 0<x<1, t>0 \\
w(x, 0)=0,0 \leq x \leq 1 \\
w(0, t)=w(1, t)=0, t>0
\end{array}\right.
$$

We again look for a solution of the same form as in part a) :

$$
w(x, t)=A(t) \cdot \sin (2 \pi x)+B(t) \cdot \sin (3 \pi x)
$$

Again, the fact that $w(0, t)=w(1, t)=0$ follows by construction.
For w as defined above, we obtain:
$w_{t}-w_{x x}=\left\{A^{\prime}(t)+4 \pi^{2} A(t)\right\} \cdot \sin (2 \pi x)+\left\{B^{\prime}(t)+9 \pi^{2} B(t)\right\} \cdot \sin (3 \pi x)=e^{-m t} \cdot \sin (2 \pi x)+e^{-m t} \cdot \sin (3 \pi x)$
It follows that:

$$
\left\{\begin{array}{l}
A^{\prime}(t)+4 \pi^{2} A(t)=e^{-m t} \\
B^{\prime}(t)+9 \pi^{2} B(t)=e^{-m t}
\end{array}\right.
$$

As before, the condition $w(x, 0)=0$ implies that we need to take $A(0)=B(0)=0$.
Hence, the initial value problem for $A(t)$ becomes:

$$
\left\{\begin{array}{l}
A^{\prime}(t)+4 \pi^{2} A(t)=e^{-m t} \\
A(0)=0
\end{array}\right.
$$

As in part a), we use the integrating factor $e^{4 \pi^{2} t}$ and deduce that:

$$
\left(e^{4 \pi^{2} t} A(t)\right)^{\prime}(t)=e^{4 \pi^{2} t-m t}
$$

Let us first assume that $m \neq 4 \pi^{2}$. In that case, we obtain:

$$
e^{4 \pi^{2} t} A(t)=A_{0}+\frac{1}{4 \pi^{2}-m} e^{4 \pi^{2} t-m t}
$$

Since $A(0)=0$, it follows that $A_{0}=-\frac{1}{4 \pi^{2}-m}$. Consequently:

$$
A(t)=\frac{1}{4 \pi^{2}-m} \cdot\left\{e^{-m t}-e^{-4 \pi^{2} t}\right\}
$$

If $m=4 \pi^{2}$, the ODE for $A(t)$ becomes:

$$
\left(e^{4 \pi^{2} t} A(t)\right)^{\prime}=1
$$

Hence:

$$
e^{4 \pi^{2} t} A(t)=A_{0}+t
$$

It follows that $A_{0}=0$ and so:

$$
A(t)=t e^{-4 \pi^{2} t}
$$

Similarly, if $m \neq 9 \pi^{2}$, we obtain that:

$$
B(t)=\frac{1}{9 \pi^{2}-m} \cdot\left\{e^{-m t}-e^{-9 \pi^{2} t}\right\}
$$

If $m=9 \pi^{2}$, then:

$$
B(t)=t e^{-9 \pi^{2} t}
$$

We put everything together to deduce that:

$$
v(x, t)=e^{m t} \cdot w(x, t)=e^{m t} \cdot A(t) \cdot \sin (2 \pi x)+e^{m t} \cdot B(t) \cdot \sin (3 \pi x)
$$

We need to consider three cases:

- $\mathrm{m} \neq 4 \pi^{2}, \mathrm{~m} \neq \mathbf{9} \pi^{2}$:
$v(x, t)=e^{m t} \cdot \frac{1}{4 \pi^{2}-m} \cdot\left\{e^{-m t}-e^{-4 \pi^{2} t}\right\} \cdot \sin (2 \pi x)+e^{m t} \cdot \frac{1}{9 \pi^{2}-m} \cdot\left\{e^{-m t}-e^{-9 \pi^{2} t}\right\} \cdot \sin (3 \pi x)$.
- $\mathrm{m}=4 \pi^{2}$:
$v(x, t)=e^{m t} \cdot t e^{-4 \pi^{2} t} \cdot \sin (2 \pi x)+e^{m t} \cdot \frac{1}{9 \pi^{2}-m} \cdot\left\{e^{-m t}-e^{-9 \pi^{2} t}\right\} \cdot \sin (3 \pi x)$.
- $\mathbf{m}=9 \pi^{2}$:
$v(x, t)=e^{m t} \cdot \frac{1}{4 \pi^{2}-m} \cdot\left\{e^{-m t}-e^{-4 \pi^{2} t}\right\} \cdot \sin (2 \pi x)+e^{m t} \cdot t e^{-9 \pi^{2} t} \cdot \sin (3 \pi x)$.

