MATH 425, HOMEWORK 1

This homework is due in class on Thursday, January 24. Each problem is worth 10 points.

Exercise 1. We recall from class that an operator \mathcal{L} acting on functions is said to be **linear** if for all functions u, v and for all scalars a, b, one has $\mathcal{L}(au + bv) = a \cdot \mathcal{L}u + b \cdot \mathcal{L}v$.

Which of the following operators are linear?

a) $\mathcal{L}u = u_{xx} + u_{xy}$. b) $\mathcal{L}u = u_t + uu_x$. c) $\mathcal{L}u = \sin(x^2y)u_x + e^{xy^2}u_y$. d) $\mathcal{L}u = u_x + u_y + 1$. e) $\mathcal{L}u = u_{xx} + \sin(u)$. Give a brief justification for each answer.

In the following exercises, u is assumed to be a function of two variables.

Exercise 2. (Strauss, Exercise 1.2.1.) Solve the first order PDE: $2u_t + 3u_x = 0$, with the auxiliary condition $u = \sin x$ when t = 0.

Exercise 3. (Strauss, Exercise 1.2.3.) Solve the equation: $(1 + x^2)u_x + u_y = 0$. Describe its characteristic curves.

Exercise 4. (Strauss, Exercise 1.2.6.)

a) Solve the equation: $yu_x + xu_y = 0$, with the condition $u(0, y) = e^{-y^2}$. b) In which region of the xy-plane is the solution uniquely determined?

Exercise 5. (Strauss, Exercise 1.2.11.) Use the coordinate method in order to solve the equation:

 $u_x + 2u_y + (2x - y)u = 2x^2 + 3xy - 2y^2.$