MATH 425, FINAL EXAM SOLUTIONS

Each exercise is worth 50 points.
Exercise 1. a) The operator \mathcal{L}_{1} is defined on smooth functions of (x, y) by:

$$
\mathcal{L}_{1}(u):=\arctan (x y) \cdot u_{x x}+\sin \left(x^{2} y^{2}\right) \cdot u_{y y} .
$$

Is the operator \mathcal{L}_{1} linear? Prove your answer.
b) Does the answer change if we replace the operator \mathcal{L}_{1} by the operator \mathcal{L}_{2}, which is given by:

$$
\mathcal{L}_{2}(u):=u_{x x}+e^{u} ?
$$

c) Find the general solution of the PDE $u_{x}+x^{2} u_{y}=0$ by using the method of characteristics. Check that your solution solves the PDE. You don't need to show that these are all of the solutions.

Solution:

a) Given smooth functions u, v and constants a, b, we compute:

$$
\begin{gathered}
\mathcal{L}_{1}(a u+b v)=\arctan (x y) \cdot(a u+b v)_{x x}+\sin \left(x^{2} y^{2}\right) \cdot(a u+b v)_{y y}= \\
=a\left(\arctan (x y) \cdot u_{x x}+\sin \left(x^{2} y^{2}\right) \cdot u_{y y}\right)+b\left(\arctan (x y) \cdot u_{x x}+\sin \left(x^{2} y^{2}\right) \cdot u_{y y}\right)= \\
=a \mathcal{L}_{1}(u)+b \mathcal{L}_{1}(v)
\end{gathered}
$$

Hence, \mathcal{L}_{1} is linear.
b) We note that $\mathcal{L}_{2}(0)=1 \neq 0$, which implies that the operator is not linear. Namely, for a linear operator T, we know that $T(0)=0$ if we substitute $a=b=0$ into the definition of linearity.
c) The characteristic ODE is given by:

$$
\frac{d y}{d x}=x^{2}
$$

The general solution is given by:

$$
y(x)=\frac{x^{3}}{3}+C
$$

Hence, by using the method of characteristics, the solution u is given by:

$$
u(x, y)=f\left(y-\frac{x^{3}}{3}\right)
$$

for some (differentiable) function $f: \mathbb{R} \rightarrow \mathbb{R}$.
For u defined as above, we note that:

$$
u_{x}(x, y)=-x^{2} f^{\prime}\left(y-\frac{x^{3}}{3}\right)
$$

and

$$
u_{y}(x, y)=f^{\prime}\left(y-\frac{x^{3}}{3}\right)
$$

Hence:

$$
u_{x}+x^{2} u_{y}=-x^{2} f^{\prime}\left(y-\frac{x^{3}}{3}\right)+x^{2} f^{\prime}\left(y-\frac{x^{3}}{3}\right)=0
$$

Exercise 2. In this exercise, we would like to find a solution to the following initial value problem:

$$
\left\{\begin{array}{l}
u_{t}-u_{x x}=0, \text { for } x \in \mathbb{R}, t>0 \tag{1}\\
u(x, 0)=x^{2}, \text { for } x \in \mathbb{R}
\end{array}\right.
$$

a) Let $v:=u_{x x x}$. What initial value problem does v solve?
b) Use this observation to deduce that we can take $v=0$ to be a solution of the initial value problem obtained in part a).
c) What does this tell us about the form of u ?
d) Use the latter expression to find a solution of (1). Check that the obtained function solves (1).
e) Alternatively, write the formula for a solution of (1) involving the heat kernel on \mathbb{R}. Write the heat kernel explicitly in terms of exponentials. Don't simplify the integral.

Solution:

a) By the differentiation property of the heat equation, we deduce that v also solves the heat equation. We note that $v_{x x x}(x, 0)=0$. Hence, v solves the initial value problem:

$$
\left\{\begin{array}{l}
v_{t}-v_{x x}=0, \text { for } x \in \mathbb{R}, t>0 \\
v(x, 0)=0, \text { for } x \in \mathbb{R}
\end{array}\right.
$$

b) We note that the function $v=0$ solves the initial value problem in part a).
c) From part b), we observe that we can look for a solution to (1) of the form:

$$
\begin{equation*}
u(x, t)=A(t)+B(t) \cdot x+C(t) \cdot x^{2} \tag{2}
\end{equation*}
$$

for some (differentiable) functions $A, B, C: \mathbb{R}_{t}^{+} \rightarrow \mathbb{R}$ satisfying $A(0)=B(0)=0, C(0)=1$.
d) We note that, for u of the form (2), one has:

$$
u_{t}-u_{x x}=\left(A^{\prime}(t)-2 C(t)\right)+B^{\prime}(t) \cdot x+C^{\prime}(t) \cdot x^{2}
$$

Hence, such a u solves the heat equation if and only if:

$$
\left\{\begin{array}{l}
A^{\prime}(t)=2 C(t) \\
B^{\prime}(t)=0 \\
C^{\prime}(t)=0
\end{array}\right.
$$

From the latter two conditions, it follows that B and C are constant. Since $B(0)=0$ and $C(0)=1$, we deduce that:

$$
B(t)=0 \text { and } C(t)=1
$$

We now use the first condition to deduce that:

$$
A^{\prime}(t)=2 C(t)=2
$$

Since $A(0)=0$, we conclude that $A(t)=2 t$. Putting all of this together, we obtain:

$$
\begin{equation*}
u(x, t)=2 t+x^{2} \tag{3}
\end{equation*}
$$

We readily check that the function u defined in (3) solves the initial value problem (1). Namely: $u_{t}=u_{x x}=2$, hence $u_{t}-u_{x x}=0$ and $u(x, 0)=0+x^{2}=x^{2}$.
e) We use the formula from class and recall that we are taking the diffusion coefficient to equal to 1 , and hence u given by:

$$
\begin{equation*}
u(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(x-y)^{2}}{4 t}} \cdot y^{2} d y \tag{4}
\end{equation*}
$$

solves (1).
Exercise 3. a) Show that the function $u: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}$ defined by $u(x):=\log |x|$ is harmonic on $\mathbb{R}^{2} \backslash\{0\}$.

In the following, suppose that $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a smooth function which equals zero outside of some ball centered at the origin.
b) Prove that:

$$
\lim _{\epsilon \rightarrow 0} \int_{\partial B(0, \epsilon)}\left[\log |x| \cdot \frac{\partial \phi}{\partial n}-\frac{\partial}{\partial n}(\log |x|) \cdot \phi(x)\right] d S(x) \rightarrow 2 \pi \phi(0)
$$

for n being the unit normal on $\partial B(0, \epsilon)$ pointing towards the origin.
c) Use the result from part b) in order to prove:

$$
\phi(0)=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \log |x| \cdot \Delta \phi(x) d x
$$

Solution:

a) We write $\log |x|$ as $\log \sqrt{x_{1}^{2}+x_{2}^{2}}$.

By the Chain Rule, it follows that:

$$
\begin{gathered}
(\log |x|)_{x_{1}}=\frac{1}{\sqrt{x_{1}^{2}+x_{2}^{2}}} \cdot \frac{2 x_{1}}{2 \sqrt{x_{1}^{2}+x_{2}^{2}}}=\frac{x_{1}}{x_{1}^{2}+x_{2}^{2}} \\
(\log |x|)_{x_{1} x_{1}}=\frac{1}{x_{1}^{2}+x_{2}^{2}}-\frac{2 x_{1}^{2}}{\left(x_{1}^{2}+x_{2}^{2}\right)^{2}}
\end{gathered}
$$

By symmetry:

$$
(\log |x|)_{x_{2} x_{2}}=\frac{1}{x_{1}^{2}+x_{2}^{2}}-\frac{2 x_{2}^{2}}{\left(x_{1}^{2}+x_{2}^{2}\right)^{2}}
$$

Summing the previous two identities, we obtain:

$$
\Delta \log |x|=0
$$

Alternatively, we can use the formula for Laplace's operator in polar coordinates:

$$
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}
$$

in order to deduce that:

$$
\Delta \log r=\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}\right) \log r=-\frac{1}{r^{2}}+\frac{1}{r^{2}}=0
$$

b)

$$
\lim _{\epsilon \rightarrow 0} \int_{\partial B(0, \epsilon)}\left[\log |x| \cdot \frac{\partial \phi}{\partial n}-\frac{\partial}{\partial n}(\log |x|) \cdot \phi(x)\right] d S(x) \rightarrow 2 \pi \phi(0)
$$

Let us first observe that, there exists $M>0$ independent of ϵ such that, when ϵ is sufficiently small, it is the case that:

$$
\left|\frac{\partial \phi}{\partial n}\right| \leq M
$$

Consequently:
$\left|\int_{\partial B(0, \epsilon)} \log \right| x\left|\cdot \frac{\partial \phi}{\partial n} d S(x)\right|=|\log (\epsilon)| \cdot\left|\int_{\partial B(0, \epsilon)} \frac{\partial \phi}{\partial n} d S(x)\right| \leq|\log (\epsilon)| \cdot \int_{\partial B(0, \epsilon)}\left|\frac{\partial \phi}{\partial n}\right| d S(x) \leq 2 \pi M \epsilon \cdot|\log (\epsilon)|$.
Let us now observe that:

$$
\lim _{x \rightarrow 0+}(x \log x)=0
$$

This fact follows from L'Hôpital's rule since:

$$
\lim _{x \rightarrow 0+}(x \log x)=\lim _{x \rightarrow 0+} \frac{\log x}{\left(\frac{1}{x}\right)}=\lim _{x \rightarrow 0+} \frac{(\log x)^{\prime}}{\left(\frac{1}{x}\right)^{\prime}}=\lim _{x \rightarrow 0+} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow 0+}(-x)=0
$$

Consequently, the integral of the first term goes to zero as $\epsilon \rightarrow 0$.
We now need to look at the integral of the second term, Let us note that:

$$
\frac{\partial}{\partial n} \log |x|=(\nabla \log |x|) \cdot n
$$

From the calculations in part a), it follows that:

$$
\nabla \log |x|=\left((\log |x|)_{x_{1}},(\log |x|)_{x_{2}}\right)=\left(\frac{x_{1}}{x_{1}^{2}+x_{2}^{2}}, \frac{x_{2}}{x_{1}^{2}+x_{2}^{2}}\right)=\frac{x}{|x|^{2}}
$$

By definition, we obtain that on $\partial B(0, \epsilon)$, one has:

$$
n=-\frac{x}{\epsilon} .
$$

Hence:

$$
\frac{\partial}{\partial n} \log |x|=-\frac{1}{\epsilon} \cdot \frac{x \cdot x}{|x|^{2}}=-\frac{1}{\epsilon}
$$

Alternatively, we can use polar coordinates and see that:

$$
\frac{\partial}{\partial n} \log |x|=-\frac{\partial}{\partial r} \log r=-\frac{1}{r}=-\frac{1}{\epsilon}
$$

on $\partial B(0, \epsilon)$. It follows that:

$$
\int_{\partial B(0, \epsilon)}\left[-\frac{\partial}{\partial n}(\log |x|) \cdot \phi(x)\right] d S(x)=\frac{1}{\epsilon} \int_{\partial B(0, \epsilon)} \phi(x) d S(x) \rightarrow 2 \pi \phi(0) \text { as } \epsilon \rightarrow 0
$$

c) Let us assume that $\phi=0$ outside of $B(0, R) \subseteq \mathbb{R}^{2}$ and let $\epsilon \in(0, R)$ be given. We let:

$$
\Omega_{\epsilon}:=B(0,2 R) \backslash B(0, \epsilon)
$$

From part a), we know that, on $\mathbb{R}^{2} \backslash\{0\}$:

$$
\Delta \log |x|=0
$$

We now apply Green's second identity, noting that ϕ and $\log |x|$ are both smooth on Ω_{ϵ} in order to deduce that:

$$
\int_{\Omega_{\epsilon}}[\log |x| \cdot \Delta \phi(x)-\Delta \log |x| \cdot \phi(x)] d x=\int_{\partial \Omega_{\epsilon}}\left[\log |x| \cdot \frac{\partial \phi}{\partial n}-\frac{\partial}{\partial n}(\log |x|) \cdot \phi(x)\right] d S(x)
$$

We note that $\partial \Omega_{\epsilon}$ consists of two parts: $\partial B(0, \epsilon)$ and $\partial B(0,2 R)$. Since, by assumption, ϕ vanishes near $\partial B(0,2 R)$, it follows that the contribution to the right-hand side from the outer boundary $\partial B(0,2 R)$ equals to zero. Moreover, we know that $\Delta \log |x|=0$ on Ω_{ϵ}. Hence, it follows that:

$$
\int_{\Omega_{\epsilon}} \log |x| \cdot \Delta \phi(x) d x=\int_{\partial B(0, \epsilon)}\left[\log |x| \cdot \frac{\partial \phi}{\partial n}-\frac{\partial}{\partial n}(\log |x|) \cdot \phi(x)\right] d S(x)
$$

We note that $\Delta \phi=0$ for $|x| \geq 2 R$ and we deduce that:

$$
\int_{|x| \geq \epsilon} \log |x| \cdot \Delta \phi(x) d x=\int_{\partial B(0, \epsilon)}\left[\log |x| \cdot \frac{\partial \phi}{\partial n}-\frac{\partial}{\partial n}(\log |x|) \cdot \phi(x)\right] d S(x)
$$

We now let $\epsilon \rightarrow 0$ and we use the result from part b) in order to deduce that:

$$
\int_{\mathbb{R}^{2}} \log |x| \cdot \Delta \phi(x) d x=2 \pi \phi(0)
$$

The claim now follows.
Exercise 4. Let us recall the representation formula for harmonic functions in three dimensions:

For $\Omega \subseteq \mathbb{R}^{3}$ a bounded domain, u a harmonic function on Ω which extends continuously up to $\partial \Omega$, and $x_{0} \in \Omega$, the following formula holds:

$$
u\left(x_{0}\right)=\frac{1}{4 \pi} \int_{\partial \Omega}\left[-u(x) \frac{\partial}{\partial n}\left(\frac{1}{\left|x-x_{0}\right|}\right)+\frac{1}{\left|x-x_{0}\right|} \frac{\partial u}{\partial n}\right] d S(x)
$$

Here, n denotes the outward pointing unit normal on $\partial \Omega$.
In this exercise, one is allowed to use the representation formula without proof.
a) State the mean value property for harmonic functions in three-dimensions.
b) Use the representation formula in order to prove the mean value property in three dimensions.
c) State the definition of the Green's function $G\left(x, x_{0}\right)$ for the Laplace operator on a three-dimensional domain Ω with x_{0} a point in Ω.
d) Use the representation formula and properties of the Green's function to show that the harmonic function u defined in the beginning of the problem satisfies:

$$
u\left(x_{0}\right)=\int_{\partial \Omega} u(x) \cdot \frac{\partial G\left(x, x_{0}\right)}{\partial n} d S(x)
$$

Solution:

a) Let $x_{0} \in \mathbb{R}^{3}$ and $R>0$ are given and suppose that $u: B\left(x_{0}, R\right) \rightarrow \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a harmonic function which extends continuously up to $\partial B\left(x_{0}, R\right)$. The mean value property then states that:

$$
u\left(x_{0}\right)=\frac{1}{4 \pi R^{2}} \int_{\partial B\left(x_{0}, R\right)} u(y) d S(y)
$$

b) We can replace the function u with the function $v(x):=u\left(x-x_{0}\right.$ to see that it suffices to prove the claim in the special case when $x=0$. It is important to note that the function v is harmonic if the function u is harmonic.

In other words, we are assuming that $u: B(0, R) \rightarrow \mathbb{R}$ is harmonic and that it extends continuously up to $\partial B(0, R)$ and we want to prove that:

$$
u(0)=\frac{1}{4 \pi R^{2}} \int_{\partial B(0, R)} u(y) d S(y)
$$

by using the fact that:

$$
u(0)=\frac{1}{4 \pi} \int_{\partial B(0, R)}\left[-u(y) \frac{\partial}{\partial n}\left(\frac{1}{|y|}\right)+\frac{1}{|y|} \frac{\partial u}{\partial n}\right] d S(y)
$$

Let us first note that we can use polar coordinates to deduce that, on $\partial B(0, R)$, we can write $\frac{\partial}{\partial n}=\frac{\partial}{\partial r}$. Hence:

$$
\frac{\partial}{\partial n}\left(\frac{1}{|y|}\right)=\frac{\partial}{\partial r}\left(\frac{1}{r}\right)=-\frac{1}{r^{2}}
$$

It follows that:

$$
\begin{equation*}
\frac{1}{4 \pi} \int_{\partial B(0, R)}\left[-u(y) \frac{\partial}{\partial n}\left(\frac{1}{|y|}\right)\right] d S(y)=\frac{1}{4 \pi R^{2}} \int_{\partial B(0, R)} u(y) d S(y) \tag{5}
\end{equation*}
$$

Moreover, we note that:

$$
\frac{1}{4 \pi} \int_{\partial B(0, R)} \frac{1}{|y|} \frac{\partial u}{\partial n} d S(y)=\frac{1}{4 \pi R} \int_{\partial B(0, R)} \nabla u \cdot n d S(y)
$$

which, by the Divergence Theorem equals:

$$
\begin{equation*}
\frac{1}{4 \pi R} \int_{B(0, R)} \Delta u(y) d y=0 \tag{6}
\end{equation*}
$$

The claim now follows from (5) and (6).
c) Suppose that $\Omega \subseteq \mathbb{R}^{3}$ is a bounded domain with $x_{0} \in \Omega$. The Green's function $G\left(x, x_{0}\right)$ is a function defined on $\Omega \backslash\left\{x_{0}\right\}$, which is continuous up to $\partial \Omega$, and which satisfies the following properties:

1) $G\left(x, x_{0}\right)$ is a harmonic function on $\Omega \backslash\left\{x_{0}\right\}$.
2) $G\left(x, x_{0}\right)=0$ for $x \in \partial \Omega$.
3) $H\left(x, x_{0}\right):=G\left(x, x_{0}\right)+\frac{1}{4 \pi\left|x-x_{0}\right|}$ is harmonic on Ω.
d) We recall from property 3) in part c) that the function $H\left(x, x_{0}\right)=G\left(x, x_{0}\right)+\frac{1}{4 \pi\left|x-x_{0}\right|}$ is harmonic on Ω. We also know that the function u is harmonic on Ω. Hence, by Green's second identity:

$$
0=\int_{\partial \Omega}\left[u(x) \frac{\partial H\left(x, x_{0}\right)}{\partial n}-H\left(x, x_{0}\right) \frac{\partial u}{\partial n}\right] d S(x)
$$

By the representation formula, we know that:

$$
u\left(x_{0}\right)=\int_{\partial \Omega}\left[u(x) \frac{\partial}{\partial n}\left(-\frac{1}{4 \pi\left|x-x_{0}\right|}\right)+\frac{1}{4 \pi\left|x-x_{0}\right|} \frac{\partial u}{\partial n}\right] d S(x)
$$

By using property 3) of Green's functions, it follows that:

$$
u\left(x_{0}\right)=\int_{\partial \Omega}\left[u(x) \frac{\partial G\left(x, x_{0}\right)}{\partial n}-G\left(x, x_{0}\right) \frac{\partial u}{\partial n}\right] d S(x)
$$

By property 2), we know that $G\left(x, x_{0}\right)=0$ for $x \in \partial \Omega$. Hence:

$$
u\left(x_{0}\right)=\int_{\partial \Omega} u(x) \frac{\partial G\left(x, x_{0}\right)}{\partial n} d S(x)
$$

as was claimed.
Exercise 5. Throughout this exercise, we assume that $c>0$ is a constant.
a) Consider the differential operator $\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}$, defined on smooth functions of $(x, t) \in \mathbb{R} \times \mathbb{R}$.

Show that there exist first-order differential operators T_{1} and T_{2} such that for all smooth functions $u: \mathbb{R}_{x} \times \mathbb{R}_{t} \rightarrow \mathbb{R}$, the following identity holds:

$$
\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}\right) u=T_{1} T_{2} u
$$

b) What is the physical interpretation of the operators T_{1} and T_{2} ?
c) Using the above factorization, show that the general solution to the wave equation on $\mathbb{R}_{x} \times \mathbb{R}_{t}$:

$$
u_{t t}-c^{2} u_{x x}=0
$$

is given by:

$$
u(x, t)=f(x-c t)+g(x+c t)
$$

for some functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$.
d) Check that the function u obtained in part c) solves the wave equation. How many derivatives do the functions f and g need to have in order for this calculation to be rigorous?

Solution:

a) We note that:

$$
\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}=\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right)
$$

More precisely, for $u: \mathbb{R}_{x} \times \mathbb{R}_{t} \rightarrow \mathbb{R}$, the following identity holds:

$$
\begin{gathered}
\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right) u=\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right)\left(u_{t}+c u_{x}\right)= \\
=u_{t t}+c u_{x t}-c u_{t x}-c^{2} u_{x x}=u_{t t}-c^{2} u_{x x}=\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}\right) u .
\end{gathered}
$$

Hence, we can take:

$$
\begin{aligned}
T_{1} & =\frac{\partial}{\partial t}-c \frac{\partial}{\partial x} \\
T_{2} & =\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}
\end{aligned}
$$

b) The operators T_{1} and T_{2} correspond to transport with speed c to the left and to the right respectively.
c) Suppose that:

$$
u_{t t}-c^{2} u_{x x}=0
$$

By part a), we can write this equation as:

$$
\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right) u=0
$$

Let us take:

$$
G(x, t):=u_{t}+c u_{x} .
$$

We can then deduce that:

$$
G_{t}-c G_{x}=0
$$

Hence, G solves the transport equation. It follows that:

$$
G(x, t)=H(x+c t)
$$

for some (differentiable) function $H: \mathbb{R} \rightarrow \mathbb{R}$. We substitute this back into the definition of the function G to deduce that u then has to solve:

$$
\begin{equation*}
u_{t}+c u_{x}=G(x, t)=H(x+c t) \tag{7}
\end{equation*}
$$

In particular, u solves an inhomogeneous transport equation. We note that the general solution of the associated homogeneous equation:

$$
u_{t}^{(h)}+c u_{x}^{(h)}=0
$$

is given by:

$$
u^{(h)}(x, t)=f(x-c t)
$$

for some (differentiable) function $f: \mathbb{R} \rightarrow \mathbb{R}$. Hence, we need to find a particular solution $u^{(p)}$ of (7). Since the right-hand side is a function of $x+c t$, we look for a particular solution which is a function of $x+c t$ as well. In particular, we look for a solution of the form:

$$
u^{(p)}(x, t)=g(x+c t)
$$

for some (differentiable) function $g: \mathbb{R} \rightarrow \mathbb{R}$. For $u^{(p)}$ defined as above, we note that:

$$
u_{t}^{(p)}+c u_{x}^{(p)}=(1+c) \cdot g^{\prime}(x+c t)
$$

Hence, we want to choose h in such a way that:

$$
(1+c) g^{\prime}(x+c t)=H(x+c t)
$$

In particular, we can take:

$$
g(y):=\frac{1}{1+c} \int_{0}^{y} H(s) d s
$$

Consequently, we obtain that:

$$
u(x, t)=f(x-c t)+g(x+c t)
$$

d) For u defined as in part c), we note that:

$$
\begin{gathered}
u_{t}=-c f^{\prime}(x-c t)+c g^{\prime}(x+c t) \\
u_{t t}=c^{2} f^{\prime \prime}(x-c t)+c^{2} g^{\prime \prime}(x+c t) \\
u_{x}=f^{\prime}(x-c t)+g^{\prime}(x+c t) \\
u_{x x}=f^{\prime \prime}(x-c t)+g^{\prime \prime}(x-c t)
\end{gathered}
$$

In particular, it follows that:

$$
u_{t t}=c^{2} u_{x x}=c^{2} f^{\prime \prime}(x-c t)+c^{2} g^{\prime \prime}(x+c t)
$$

and so:

$$
u_{t t}-c^{2} u_{x x}=0
$$

In order to make this calculation rigorous, we need to assume that the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are twice differentiable.

