
MATH 425, FINAL EXAM SOLUTIONS

Each exercise is worth 50 points.

Exercise 1. a) The operator L1 is defined on smooth functions of (x, y) by:

L1(u) := arctan(xy) · uxx + sin(x2y2) · uyy.

Is the operator L1 linear? Prove your answer.

b) Does the answer change if we replace the operator L1 by the operator L2, which is given by:

L2(u) := uxx + eu ?

c) Find the general solution of the PDE ux+x2uy = 0 by using the method of characteristics. Check
that your solution solves the PDE. You don’t need to show that these are all of the solutions.

Solution:

a) Given smooth functions u, v and constants a, b, we compute:

L1(au+ bv) = arctan(xy) ·
(
au+ bv

)
xx

+ sin(x2y2) ·
(
au+ bv

)
yy

=

= a
(

arctan(xy) · uxx + sin(x2y2) · uyy
)

+ b
(

arctan(xy) · uxx + sin(x2y2) · uyy
)

=

= aL1(u) + bL1(v).

Hence, L1 is linear.

b) We note that L2(0) = 1 6= 0, which implies that the operator is not linear. Namely, for a
linear operator T , we know that T (0) = 0 if we substitute a = b = 0 into the definition of linearity.

c) The characteristic ODE is given by:
dy

dx
= x2.

The general solution is given by:

y(x) =
x3

3
+ C.

Hence, by using the method of characteristics, the solution u is given by:

u(x, y) = f
(
y − x3

3

)
for some (differentiable) function f : R→ R.

For u defined as above, we note that:

ux(x, y) = −x2f ′
(
y − x3

3

)
and

uy(x, y) = f ′
(
y − x3

3

)
.

Hence:

ux + x2uy = −x2f ′
(
y − x3

3

)
+ x2f ′

(
y − x3

3

)
= 0. �
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Exercise 2. In this exercise, we would like to find a solution to the following initial value problem:

(1)

{
ut − uxx = 0, for x ∈ R , t > 0

u(x, 0) = x2, for x ∈ R.

a) Let v := uxxx. What initial value problem does v solve?

b) Use this observation to deduce that we can take v = 0 to be a solution of the initial value
problem obtained in part a).

c) What does this tell us about the form of u?

d) Use the latter expression to find a solution of (1). Check that the obtained function solves
(1).

e) Alternatively, write the formula for a solution of (1) involving the heat kernel on R. Write
the heat kernel explicitly in terms of exponentials. Don’t simplify the integral.

Solution:

a) By the differentiation property of the heat equation, we deduce that v also solves the heat
equation. We note that vxxx(x, 0) = 0. Hence, v solves the initial value problem:{

vt − vxx = 0, for x ∈ R , t > 0

v(x, 0) = 0, for x ∈ R.

b) We note that the function v = 0 solves the initial value problem in part a).

c) From part b), we observe that we can look for a solution to (1) of the form:

(2) u(x, t) = A(t) +B(t) · x+ C(t) · x2

for some (differentiable) functions A,B,C : R+
t → R satisfying A(0) = B(0) = 0, C(0) = 1.

d) We note that, for u of the form (2), one has:

ut − uxx = (A′(t)− 2C(t)) +B′(t) · x+ C ′(t) · x2

Hence, such a u solves the heat equation if and only if:
A′(t) = 2C(t)

B′(t) = 0

C ′(t) = 0.

From the latter two conditions, it follows that B and C are constant. Since B(0) = 0 and C(0) = 1,
we deduce that:

B(t) = 0 and C(t) = 1.

We now use the first condition to deduce that:

A′(t) = 2C(t) = 2.

Since A(0) = 0, we conclude that A(t) = 2t. Putting all of this together, we obtain:

(3) u(x, t) = 2t+ x2.

We readily check that the function u defined in (3) solves the initial value problem (1). Namely:
ut = uxx = 2, hence ut − uxx = 0 and u(x, 0) = 0 + x2 = x2.
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e) We use the formula from class and recall that we are taking the diffusion coefficient to equal
to 1, and hence u given by:

(4) u(x, t) =
1√
4πt

∫ +∞

−∞
e−

(x−y)2
4t · y2 dy

solves (1). �

Exercise 3. a) Show that the function u : R2 \ {0} → R defined by u(x) := log |x| is harmonic on
R2 \ {0}.

In the following, suppose that φ : R2 → R is a smooth function which equals zero outside of some
ball centered at the origin.

b) Prove that:

lim
ε→0

∫
∂B(0,ε)

[
log |x| · ∂φ

∂n
− ∂

∂n

(
log |x|

)
· φ(x)

]
dS(x)→ 2πφ(0).

for n being the unit normal on ∂B(0, ε) pointing towards the origin.

c) Use the result from part b) in order to prove:

φ(0) =
1

2π

∫
R2

log |x| ·∆φ(x) dx.

Solution:

a) We write log |x| as log
√
x2

1 + x2
2.

By the Chain Rule, it follows that:

(log |x|)x1 =
1√

x2
1 + x2

2

· 2x1

2
√
x2

1 + x2
2

=
x1

x2
1 + x2

2

.

(log |x|)x1x1
=

1

x2
1 + x2

2

− 2x2
1

(x2
1 + x2

2)2
.

By symmetry:

(log |x|)x2x2
=

1

x2
1 + x2

2

− 2x2
2

(x2
1 + x2

2)2
.

Summing the previous two identities, we obtain:

∆ log |x| = 0.

Alternatively, we can use the formula for Laplace’s operator in polar coordinates:

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

in order to deduce that:

∆ log r =
( ∂2

∂r2
+

1

r

∂

∂r

)
log r = − 1

r2
+

1

r2
= 0.

b)

lim
ε→0

∫
∂B(0,ε)

[
log |x| · ∂φ

∂n
− ∂

∂n

(
log |x|

)
· φ(x)

]
dS(x)→ 2πφ(0).

Let us first observe that, there exists M > 0 independent of ε such that, when ε is sufficiently
small, it is the case that: ∣∣∂φ

∂n

∣∣ ≤M.
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Consequently:∣∣∣ ∫
∂B(0,ε)

log |x|·∂φ
∂n

dS(x)
∣∣∣ =

∣∣ log(ε)
∣∣·∣∣∣ ∫

∂B(0,ε)

∂φ

∂n
dS(x)

∣∣∣ ≤ ∣∣ log(ε)
∣∣·∫

∂B(0,ε)

∣∣∣∂φ
∂n

∣∣∣ dS(x) ≤ 2πMε·| log(ε)|.

Let us now observe that:
lim
x→0+

(x log x) = 0.

This fact follows from L’Hôpital’s rule since:

lim
x→0+

(
x log x

)
= lim
x→0+

log x(
1
x

) = lim
x→0+

(log x)′(
1
x

)′ = lim
x→0+

1
x

− 1
x2

= lim
x→0+

(−x) = 0.

Consequently, the integral of the first term goes to zero as ε→ 0.

We now need to look at the integral of the second term, Let us note that:

∂

∂n
log |x| =

(
∇ log |x|

)
· n.

From the calculations in part a), it follows that:

∇ log |x| =
(

(log |x|)x1
, (log |x|)x2

)
=
( x1

x2
1 + x2

2

,
x2

x2
1 + x2

2

)
=

x

|x|2
.

By definition, we obtain that on ∂B(0, ε), one has:

n = −x
ε
.

Hence:
∂

∂n
log |x| = −1

ε
· x · x
|x|2

= −1

ε
.

Alternatively, we can use polar coordinates and see that:

∂

∂n
log |x| = − ∂

∂r
log r = −1

r
= −1

ε

on ∂B(0, ε). It follows that:∫
∂B(0,ε)

[
− ∂

∂n

(
log |x|

)
· φ(x)

]
dS(x) =

1

ε

∫
∂B(0,ε)

φ(x) dS(x)→ 2πφ(0) as ε→ 0.

c) Let us assume that φ = 0 outside of B(0, R) ⊆ R2 and let ε ∈ (0, R) be given. We let:

Ωε := B(0, 2R) \B(0, ε).

From part a), we know that, on R2 \ {0}:
∆ log |x| = 0.

We now apply Green’s second identity, noting that φ and log |x| are both smooth on Ωε in order to
deduce that:∫

Ωε

[
log |x| ·∆φ(x)−∆ log |x| · φ(x)

]
dx =

∫
∂Ωε

[
log |x| · ∂φ

∂n
− ∂

∂n

(
log |x|

)
· φ(x)

]
dS(x).

We note that ∂Ωε consists of two parts: ∂B(0, ε) and ∂B(0, 2R). Since, by assumption, φ vanishes
near ∂B(0, 2R), it follows that the contribution to the right-hand side from the outer boundary
∂B(0, 2R) equals to zero. Moreover, we know that ∆ log |x| = 0 on Ωε. Hence, it follows that:∫

Ωε

log |x| ·∆φ(x) dx =

∫
∂B(0,ε)

[
log |x| · ∂φ

∂n
− ∂

∂n

(
log |x|

)
· φ(x)

]
dS(x).

We note that ∆φ = 0 for |x| ≥ 2R and we deduce that:∫
|x|≥ε

log |x| ·∆φ(x) dx =

∫
∂B(0,ε)

[
log |x| · ∂φ

∂n
− ∂

∂n

(
log |x|

)
· φ(x)

]
dS(x).
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We now let ε→ 0 and we use the result from part b) in order to deduce that:∫
R2

log |x| ·∆φ(x) dx = 2πφ(0).

The claim now follows. �

Exercise 4. Let us recall the representation formula for harmonic functions in three dimensions:

For Ω ⊆ R3 a bounded domain, u a harmonic function on Ω which extends continuously up to
∂Ω, and x0 ∈ Ω, the following formula holds:

u(x0) =
1

4π

∫
∂Ω

[
− u(x)

∂

∂n

( 1

|x− x0|

)
+

1

|x− x0|
∂u

∂n

]
dS(x).

Here, n denotes the outward pointing unit normal on ∂Ω.

In this exercise, one is allowed to use the representation formula without proof.

a) State the mean value property for harmonic functions in three-dimensions.

b) Use the representation formula in order to prove the mean value property in three dimensions.

c) State the definition of the Green’s function G(x, x0) for the Laplace operator on a three-dimensional
domain Ω with x0 a point in Ω.

d) Use the representation formula and properties of the Green’s function to show that the harmonic
function u defined in the beginning of the problem satisfies:

u(x0) =

∫
∂Ω

u(x) · ∂G(x, x0)

∂n
dS(x).

Solution:

a) Let x0 ∈ R3 and R > 0 are given and suppose that u : B(x0, R) → R3 → R is a harmonic
function which extends continuously up to ∂B(x0, R). The mean value property then states that:

u(x0) =
1

4πR2

∫
∂B(x0,R)

u(y) dS(y).

b) We can replace the function u with the function v(x) := u(x− x0 to see that it suffices to prove
the claim in the special case when x = 0. It is important to note that the function v is harmonic if
the function u is harmonic.

In other words, we are assuming that u : B(0, R) → R is harmonic and that it extends contin-
uously up to ∂B(0, R) and we want to prove that:

u(0) =
1

4πR2

∫
∂B(0,R)

u(y) dS(y)

by using the fact that:

u(0) =
1

4π

∫
∂B(0,R)

[
− u(y)

∂

∂n

( 1

|y|

)
+

1

|y|
∂u

∂n

]
dS(y).

Let us first note that we can use polar coordinates to deduce that, on ∂B(0, R), we can write
∂
∂n = ∂

∂r . Hence:

∂

∂n

( 1

|y|

)
=

∂

∂r

(1

r

)
= − 1

r2
.
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It follows that:

(5)
1

4π

∫
∂B(0,R)

[
− u(y)

∂

∂n

( 1

|y|

)]
dS(y) =

1

4πR2

∫
∂B(0,R)

u(y) dS(y).

Moreover, we note that:

1

4π

∫
∂B(0,R)

1

|y|
∂u

∂n
dS(y) =

1

4πR

∫
∂B(0,R)

∇u · ndS(y)

which, by the Divergence Theorem equals:

(6)
1

4πR

∫
B(0,R)

∆u(y) dy = 0.

The claim now follows from (5) and (6).

c) Suppose that Ω ⊆ R3 is a bounded domain with x0 ∈ Ω. The Green’s function G(x, x0) is
a function defined on Ω \ {x0}, which is continuous up to ∂Ω, and which satisfies the following
properties:

1) G(x, x0) is a harmonic function on Ω \ {x0}.
2) G(x, x0) = 0 for x ∈ ∂Ω.
3) H(x, x0) := G(x, x0) + 1

4π|x−x0| is harmonic on Ω.

d) We recall from property 3) in part c) that the function H(x, x0) = G(x, x0)+ 1
4π|x−x0| is harmonic

on Ω. We also know that the function u is harmonic on Ω. Hence, by Green’s second identity:

0 =

∫
∂Ω

[
u(x)

∂H(x, x0)

∂n
−H(x, x0)

∂u

∂n

]
dS(x).

By the representation formula, we know that:

u(x0) =

∫
∂Ω

[
u(x)

∂

∂n

(
− 1

4π|x− x0|

)
+

1

4π|x− x0|
∂u

∂n

]
dS(x).

By using property 3) of Green’s functions, it follows that:

u(x0) =

∫
∂Ω

[
u(x)

∂G(x, x0)

∂n
−G(x, x0)

∂u

∂n

]
dS(x)

By property 2), we know that G(x, x0) = 0 for x ∈ ∂Ω. Hence:

u(x0) =

∫
∂Ω

u(x)
∂G(x, x0)

∂n
dS(x)

as was claimed. �

Exercise 5. Throughout this exercise, we assume that c > 0 is a constant.

a) Consider the differential operator ∂2

∂t2 − c
2 ∂2

∂x2 , defined on smooth functions of (x, t) ∈ R× R.

Show that there exist first-order differential operators T1 and T2 such that for all smooth functions
u : Rx × Rt → R, the following identity holds:( ∂2

∂t2
− c2 ∂

2

∂x2

)
u = T1T2u.

b) What is the physical interpretation of the operators T1 and T2?

c) Using the above factorization, show that the general solution to the wave equation on Rx × Rt:
utt − c2uxx = 0

is given by:
u(x, t) = f(x− ct) + g(x+ ct)
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for some functions f, g : R→ R.

d) Check that the function u obtained in part c) solves the wave equation. How many derivatives do
the functions f and g need to have in order for this calculation to be rigorous?

Solution:

a) We note that:

∂2

∂t2
− c2 ∂

2

∂x2
=
( ∂
∂t
− c ∂

∂x

)( ∂
∂t

+ c
∂

∂x

)
.

More precisely, for u : Rx × Rt → R, the following identity holds:( ∂
∂t
− c ∂

∂x

)( ∂
∂t

+ c
∂

∂x

)
u =

( ∂
∂t
− c ∂

∂x

)(
ut + cux

)
=

= utt + cuxt − cutx − c2uxx = utt − c2uxx =
( ∂2

∂t2
− c2 ∂

2

∂x2

)
u.

Hence, we can take:

T1 =
∂

∂t
− c ∂

∂x

T2 =
∂

∂t
+ c

∂

∂x
.

b) The operators T1 and T2 correspond to transport with speed c to the left and to the right re-
spectively.

c) Suppose that:

utt − c2uxx = 0.

By part a), we can write this equation as:( ∂
∂t
− c ∂

∂x

)( ∂
∂t

+ c
∂

∂x

)
u = 0.

Let us take:

G(x, t) := ut + cux.

We can then deduce that:

Gt − cGx = 0.

Hence, G solves the transport equation. It follows that:

G(x, t) = H(x+ ct)

for some (differentiable) function H : R → R. We substitute this back into the definition of the
function G to deduce that u then has to solve:

(7) ut + cux = G(x, t) = H(x+ ct).

In particular, u solves an inhomogeneous transport equation. We note that the general solution of
the associated homogeneous equation:

u
(h)
t + cu(h)

x = 0

is given by:

u(h)(x, t) = f(x− ct)
for some (differentiable) function f : R → R. Hence, we need to find a particular solution u(p) of
(7). Since the right-hand side is a function of x + ct, we look for a particular solution which is a
function of x+ ct as well. In particular, we look for a solution of the form:

u(p)(x, t) = g(x+ ct)
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for some (differentiable) function g : R→ R. For u(p) defined as above, we note that:

u
(p)
t + cu(p)

x = (1 + c) · g′(x+ ct).

Hence, we want to choose h in such a way that:

(1 + c)g′(x+ ct) = H(x+ ct).

In particular, we can take:

g(y) :=
1

1 + c

∫ y

0

H(s) ds.

Consequently, we obtain that:

u(x, t) = f(x− ct) + g(x+ ct).

d) For u defined as in part c), we note that:

ut = −cf ′(x− ct) + cg′(x+ ct)

utt = c2f ′′(x− ct) + c2g′′(x+ ct)

ux = f ′(x− ct) + g′(x+ ct)

uxx = f ′′(x− ct) + g′′(x− ct).
In particular, it follows that:

utt = c2uxx = c2f ′′(x− ct) + c2g′′(x+ ct)

and so:
utt − c2uxx = 0.

In order to make this calculation rigorous, we need to assume that the functions f, g : R → R are
twice differentiable. �


