CLASS OF 1880 EXAM, SOLUTIONS

Friday, April 5, 2013. Each problem is worth 25 points.

Exercise 1. Suppose that $\Box ABCD$ is a trapezoid whose sides AB and CD are parallel. Let S denote the intersection of the diagonals of $\Box ABCD$. We denote by A_1, A_2, A_3, A_4 the areas of the triangles $\Delta ABS, \Delta BCS, \Delta CDS, \Delta DAS$ respectively.

- a) Prove that: $A_2 = A_4$.
- b) Moreover, prove that: $A_1 \cdot A_3 = A_2^2$
- c) Let A denote the area of $\Box ABCD$. Prove that: $A \ge 4A_2$.
- d) What can one say about $\Box ABCD$ if $A = 4A_2$? Prove your claim.

Solution:

a) Since AB is parallel to CD, it follows that the distance from the point C to the line AB equals the distance from the point D to the line AB. Hence, the areas of the triangles ΔABC and ΔABD are equal. The area of the triangle ΔABD equals $A_1 + A_2$ and the area of the triangle ΔABC equals $A_1 + A_4$. Hence $A_1 + A_2 = A_1 + A_4$, from where we deduce that $A_2 = A_4$.

b) Let $\phi := \measuredangle ASB$. Then, we know that:

$$A_1 = \frac{1}{2} \cdot |AS| \cdot |BS| \cdot \sin \phi$$
$$A_2 = \frac{1}{2} \cdot |BS| \cdot |CS| \cdot \sin(180^\circ - \phi) = \frac{1}{2} \cdot |BS| \cdot |CS| \cdot \sin \phi$$
$$A_3 = \frac{1}{2} \cdot |CS| \cdot |DS| \cdot \sin \phi$$
$$A_4 = \frac{1}{2} \cdot |DS| \cdot |AS| \cdot \sin(180^\circ - \phi) = \frac{1}{2} \cdot |DS| \cdot |AS| \cdot \sin \phi.$$

It follows that:

$$A_1 \cdot A_3 = A_2 \cdot A_4 = \frac{1}{4} \cdot |AS| \cdot |BS| \cdot |CS| \cdot |DS| \cdot \sin^2 \phi.$$

Since $A_2 = A_4$ by part a), it follows that:

$$A_1 \cdot A_3 = A_2^2.$$

c) We know that:

$$A = A_1 + A_2 + A_3 + A_4 = A_1 + A_3 + 2A_2$$

By the Arithmetic Mean - Geometric Mean Inequality, it follows that:

$$A_1 + A_3 \ge 2\sqrt{A_1 \cdot A_3} = 2A_2.$$

Hence, it follows that:

$$A \ge 2A_2 + 2A_2 = 4A_2.$$

d) From part c), it follows that $A = 4A_2$ if and only if $A_1 + A_3 = 2\sqrt{A_1 \cdot A_3}$. We know that $A_1 + A_3 - 2\sqrt{A_1 \cdot A_3} = (\sqrt{A_1} - \sqrt{A_3})^2$, so equality holds if and only if $A_1 = A_3$. Since $A_1 \cdot A_3 = A_2^2$, it follows that $A = 4A_2$ if and only if $A_1 = A_2 = A_3 = A_4$, which holds if and only if S is the midpoint of AC and of BD. The latter is the case if and only if $\Box ABCD$ is a parallelogram. \Box

Exercise 2. Suppose that A and B are distinct $n \times n$ matrices such that:

i) $A^3 = B^3$

ii) $A^2 \cdot B = B^2 \cdot A$.

Prove that the matrix $A^2 + B^2$ is not invertible.

Solution:

Let us note that

 $(A^2 + B^2) \cdot (A - B) = A^2 \cdot A - A^2 \cdot B + B^2 \cdot A - B^2 \cdot B = (A^3 - B^3) + (A^2 \cdot B - B^2 \cdot A) = 0.$

If $A^2 + B^2$ were invertible, we could multiply the above equality by the inverse of $A^2 + B^2$ on the left to deduce that A - B = 0, which is a contradiction since the matrices A and B are distinct by assumption. It follows that $A^2 + B^2$ is not invertible. \Box

Exercise 3. a) Prove that for all $n \in \mathbb{N}$ the following identity holds:

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

b) Suppose that $n \in \mathbb{N}$ is a positive integer and suppose that a_1, a_2, \ldots, a_n are mutually distinct positive integers. Prove that:

$$\left(\sum_{j=1}^n a_j^5\right) + \left(\sum_{j=1}^n a_j^7\right) \ge 2\left(\sum_{j=1}^n a_j^3\right)^2$$

c) When does equality hold in part b)?

Solution:

a) We argue by induction on n. The base case n = 1 holds since both the left and right hand side are equal to 1. For the inductive step, we assume that the claim holds for n = k and we want to show that it holds for n = k + 1. This follows from the identity:

$$\left(\frac{(k+1)(k+2)}{2}\right)^2 - \left(\frac{k(k+1)}{2}\right)^2 = (k+1)^2 \cdot \frac{1}{4}\left((k+2)^2 - k^2\right) = (k+1)^2 \cdot \frac{4k+4}{4} = (k+1)^3.$$

b) We prove the claim by induction on n.

Base case: n = 1. Let $x := a_1$. We need to show that:

$$x^5 + x^7 \ge 2(x^3)^2.$$

This bound follows from the Arithmetic Mean - Geometric Mean Inequality:

$$x^5 + x^7 \ge 2\sqrt{x^5 \cdot x^7} = 2x^6 = 2(x^3)^2.$$

Here, equality holds if and only if x = 1.

Inductive step: We suppose that the claim holds for some $n = k \in \mathbb{N}$. We want to show that it holds for n = k + 1.

Suppose that $a_1, \ldots, a_k, a_{k+1}$ are mutually distinct positive integers. Let us assume, without loss of generality that $x = a_{k+1}$ is the largest element of the set $\{a_1, \ldots, a_k, a_{k+1}\}$. We then obtain:

$$2\Big(\sum_{j=1}^{k+1} a_j^3\Big)^2 = 2\Big(\sum_{j=1}^k a_j^3 + x^3\Big)^2 = 2\Big(\sum_{j=1}^k a_j^3\Big)^2 + 4x^3\Big(\sum_{j=1}^k a_j^3\Big) + 2x^6.$$

By the inductive assumption, this quantity is:

$$\leq \left(\sum_{j=1}^{k} a_{j}^{5}\right) + \left(\sum_{j=1}^{k} a_{j}^{7}\right) + 4x^{3}\left(\sum_{j=1}^{k} a_{j}^{3}\right) + 2x^{6}.$$

Since by assumption, $a_1, a_2, \ldots, a_k \leq x - 1 = a_{k+1} - 1$, we obtain that this sum is:

$$\leq \left(\sum_{j=1}^{k} a_{j}^{5}\right) + \left(\sum_{j=1}^{k} a_{j}^{7}\right) + 4x^{3}\left(\sum_{j=1}^{x-1} j^{3}\right) + 2x^{6}.$$

 $\mathbf{2}$

We now use part a) to deduce that this equals:

$$\left(\sum_{j=1}^{k} a_{j}^{5}\right) + \left(\sum_{j=1}^{k} a_{j}^{7}\right) + 4x^{3} \cdot \left(\frac{(x-1) \cdot x}{2}\right)^{2} + 2x^{6} =$$
$$= \left(\sum_{j=1}^{k} a_{j}^{5}\right) + \left(\sum_{j=1}^{k} a_{j}^{7}\right) + x^{7} - 2x^{6} + x^{5} + 2x^{6} =$$
$$= \left(\sum_{j=1}^{k} a_{j}^{5}\right) + \left(\sum_{j=1}^{k} a_{j}^{7}\right) + x^{7} + x^{5} = \left(\sum_{j=1}^{k+1} a_{j}^{5}\right) + \left(\sum_{j=1}^{k+1} a_{j}^{7}\right)^{2}$$

since $x = a_{k+1}$. The claim now follows.

c) From the proof in part b), it follows that equality holds if and only if $\{a_1, a_2, \ldots, a_n\} = \{1, 2, \ldots, n\}$. The crucial point was that we had equality in $\sum_{i=1}^k a_i^3 = \sum_{i=1}^{x-1} j^3$. \Box

Exercise 4. Let the sequence $(a_n)_{n>0}$ be defined as follows:

i) $a_0 := 0, a_1 := 1.$

- ii) Given $a_0, a_1, a_2, \ldots, a_n$, the term a_{n+1} is defined to be the smallest non-negative integer such that there don't exist $i, j \in \{0, 1, \ldots, n\}$, with $i \leq j$ such that a_i, a_j, a_{n+1} are three consecutive terms of an arithmetic sequence, i.e. $a_i + a_{n+1} = 2a_j$.
- a) Find a_2, a_3 and a_4 .

b) Prove that, for $n \ge 1$, a_n equals the n-th positive integer whose expansion in base 3 doesn't contain the digit 2.

c) Find a_{100} .

Solution:

a) We note that $a_2 = 3$ (it can't equal 2 because $a_0 = 0, a_1 = 1$). Furthermore $a_3 = 4$ and $a_4 = 9$. We note that a_4 can't equal 5 since $a_1 = 1, a_2 = 3$. It can't equal 6 since $a_0 = 0, a_3 = 3$. It can't equal 7 since $a_1 = 1, a_3 = 4$. Finally, it can't equal 8 since $a_0 = 0, a_3 = 4$. If we choose $a_4 = 9$, then the condition *ii*) will be satisfied.

b) We argue by induction. Namely, we show that, for all $k \ge 1, a_1, \ldots, a_k$ are the first k positive integers whose expansion in basis 3 doesn't contain the digit 2.

Base case: k = 1. The claim holds by condition i).

Inductive step: Suppose that the claim holds holds for some $k \ge 1$. We want to show that it holds for k + 1.

We are given a_0, a_1, \ldots, a_k and we want to add a_{k+1} according to the rule *ii*). Let x denote the smallest positive integer greater than a_k which doesn't contain any digits of 2 in its base three expansion. We want to argue that $a_{k+1} = x$.

Let us first show that $a_{k+1} \leq x$. This will follow if we show that for all $0 \leq i \leq j \leq k$, the numbers a_i, a_j, x are not the consecutive terms of an arithmetic sequence, i.e. it is not the case that $a_i + x = 2a_j$. Suppose that it were the case that $a_i + x = 2a_j$ for some $0 \leq i \leq j \leq k$. Then, we note that the base three expansion of $2a_j$ contains only the digits 0 and 2. On the other hand, since x is strictly bigger than a_i , it follows that there exists a digit where x has a 1 and where a_i has a 0. Let's assume that this is the m-th digit. In particular, since x and a_i only have digits 0 and 1 in base 3, it follows that there are no carries when we add them up and so the m-th digit of $x + a_i$ must equal 1. This is a contradiction. Hence, it follows that $a_{k+1} \leq x$.

We now show that $a_{k+1} \ge x$. We again argue by contradiction. Suppose that it were the case that $a_{k+1} < x$. Since $a_{k+1} > a_k$ (otherwise, we could take i = j = k.), it follows that we would then obtain: $a_k < a_{k+1} < x$. By construction of x and by the inductive assumption, it follows that every positive integer which is strictly between a_k and x must contain a digit 2 in its base 3 expansion.

Let y and z denote the results of replacing every digit 2 in the base 3 expansion of a_{k+1} by a 0 and by a 1 respectively. Since a_{k+1} was assumed to contain a digit 2 in its base 2 expansion, it follows that:

$$y < z < a_{k+1}$$

and

$$y + a_{k+1} = 2z$$

Now, y, z contain no digits 2 in their base 3 expansion by definition. Hence, by the inductive assumption, we can find $0 \le i \le j \le k$ such that $y = a_i, z = a_j$. Consequently:

$$a_i + a_{k+1} = 2a_j.$$

This gives us a contradiction.

Hence, it follows that $a_{k+1} \ge x$. Combining this with the fact that $a_{k+1} \le x$, we now obtain:

 $a_{k+1} = x.$

The claim now follows by induction.

c) From part b), we can deduce that, for $n \ge 1$, a_n equals the *n*-th positive integer whose base 3 expansion doesn't contain the digit 2. In particular, a_n is the result of taking the base 2 expansion of *n* and replacing the basis of the number system from 2 to 3, e.g. if $n = (1010)_2$ in binary, then $a_n = (1010)_3$, in base 3. In particular, we note that $100 = 64 + 32 + 4 = 2^6 + 2^5 + 2^2 = (1100100)_2$. Hence: $a_{100} = (1100100)_3 = 3^6 + 3^5 + 3^2 = 729 + 243 + 9 = 981.\square$