CLASS OF 1880 EXAM, SOLUTIONS

Friday, April 5, 2013.
Each problem is worth 25 points.
Exercise 1. Suppose that $\square A B C D$ is a trapezoid whose sides $A B$ and $C D$ are parallel. Let S denote the intersection of the diagonals of $\square A B C D$. We denote by $A_{1}, A_{2}, A_{3}, A_{4}$ the areas of the triangles $\triangle A B S, \triangle B C S, \Delta C D S, \triangle D A S$ respectively.
a) Prove that: $A_{2}=A_{4}$.
b) Moreover, prove that: $A_{1} \cdot A_{3}=A_{2}^{2}$
c) Let A denote the area of $\square A B C D$. Prove that: $A \geq 4 A_{2}$.
d) What can one say about $\square A B C D$ if $A=4 A_{2}$? Prove your claim.

Solution:

a) Since $A B$ is parallel to $C D$, it follows that the distance from the point C to the line $A B$ equals the distance from the point D to the line $A B$. Hence, the areas of the triangles $\triangle A B C$ and $\triangle A B D$ are equal. The area of the triangle $\triangle A B D$ equals $A_{1}+A_{2}$ and the area of the triangle $\triangle A B C$ equals $A_{1}+A_{4}$. Hence $A_{1}+A_{2}=A_{1}+A_{4}$, from where we deduce that $A_{2}=A_{4}$.
b) Let $\phi:=\measuredangle A S B$. Then, we know that:

$$
\begin{gathered}
A_{1}=\frac{1}{2} \cdot|A S| \cdot|B S| \cdot \sin \phi \\
A_{2}=\frac{1}{2} \cdot|B S| \cdot|C S| \cdot \sin \left(180^{\circ}-\phi\right)=\frac{1}{2} \cdot|B S| \cdot|C S| \cdot \sin \phi \\
A_{3}=\frac{1}{2} \cdot|C S| \cdot|D S| \cdot \sin \phi \\
A_{4}=\frac{1}{2} \cdot|D S| \cdot|A S| \cdot \sin \left(180^{\circ}-\phi\right)=\frac{1}{2} \cdot|D S| \cdot|A S| \cdot \sin \phi
\end{gathered}
$$

It follows that:

$$
A_{1} \cdot A_{3}=A_{2} \cdot A_{4}=\frac{1}{4} \cdot|A S| \cdot|B S| \cdot|C S| \cdot|D S| \cdot \sin ^{2} \phi
$$

Since $A_{2}=A_{4}$ by part a), it follows that:

$$
A_{1} \cdot A_{3}=A_{2}^{2}
$$

c) We know that:

$$
A=A_{1}+A_{2}+A_{3}+A_{4}=A_{1}+A_{3}+2 A_{2}
$$

By the Arithmetic Mean - Geometric Mean Inequality, it follows that:

$$
A_{1}+A_{3} \geq 2 \sqrt{A_{1} \cdot A_{3}}=2 A_{2}
$$

Hence, it follows that:

$$
A \geq 2 A_{2}+2 A_{2}=4 A_{2}
$$

d) From part c), it follows that $A=4 A_{2}$ if and only if $A_{1}+A_{3}=2 \sqrt{A_{1} \cdot A_{3}}$. We know that $A_{1}+A_{3}-2 \sqrt{A_{1} \cdot A_{3}}=\left(\sqrt{A_{1}}-\sqrt{A_{3}}\right)^{2}$, so equality holds if and only if $A_{1}=A_{3}$. Since $A_{1} \cdot A_{3}=A_{2}^{2}$, it follows that $A=4 A_{2}$ if and only if $A_{1}=A_{2}=A_{3}=A_{4}$, which holds if and only if S is the midpoint of $A C$ and of $B D$. The latter is the case if and only if $\square A B C D$ is a parallelogram.

Exercise 2. Suppose that A and B are distinct $n \times n$ matrices such that:
i) $A^{3}=B^{3}$
ii) $A^{2} \cdot B=B^{2} \cdot A$.

Prove that the matrix $A^{2}+B^{2}$ is not invertible.

Solution:

Let us note that
$\left(A^{2}+B^{2}\right) \cdot(A-B)=A^{2} \cdot A-A^{2} \cdot B+B^{2} \cdot A-B^{2} \cdot B=\left(A^{3}-B^{3}\right)+\left(A^{2} \cdot B-B^{2} \cdot A\right)=0$.
If $A^{2}+B^{2}$ were invertible, we could multiply the above equality by the inverse of $A^{2}+B^{2}$ on the left to deduce that $A-B=0$, which is a contradiction since the matrices A and B are distinct by assumption. It follows that $A^{2}+B^{2}$ is not invertible.
Exercise 3. a) Prove that for all $n \in \mathbb{N}$ the following identity holds:

$$
1^{3}+2^{3}+3^{3}+\cdots n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

b) Suppose that $n \in \mathbb{N}$ is a positive integer and suppose that $a_{1}, a_{2}, \ldots, a_{n}$ are mutually distinct positive integers. Prove that:

$$
\left(\sum_{j=1}^{n} a_{j}^{5}\right)+\left(\sum_{j=1}^{n} a_{j}^{7}\right) \geq 2\left(\sum_{j=1}^{n} a_{j}^{3}\right)^{2}
$$

c) When does equality hold in part b)?

Solution:

a) We argue by induction on n. The base case $n=1$ holds since both the left and right hand side are equal to 1 . For the inductive step, we assume that the claim holds for $n=k$ and we want to show that it holds for $n=k+1$. This follows from the identity:

$$
\left(\frac{(k+1)(k+2)}{2}\right)^{2}-\left(\frac{k(k+1)}{2}\right)^{2}=(k+1)^{2} \cdot \frac{1}{4}\left((k+2)^{2}-k^{2}\right)=(k+1)^{2} \cdot \frac{4 k+4}{4}=(k+1)^{3} .
$$

b) We prove the claim by induction on n.

Base case: $n=1$. Let $x:=a_{1}$. We need to show that:

$$
x^{5}+x^{7} \geq 2\left(x^{3}\right)^{2}
$$

This bound follows from the Arithmetic Mean - Geometric Mean Inequality:

$$
x^{5}+x^{7} \geq 2 \sqrt{x^{5} \cdot x^{7}}=2 x^{6}=2\left(x^{3}\right)^{2}
$$

Here, equality holds if and only if $x=1$.
Inductive step: We suppose that the claim holds for some $n=k \in \mathbb{N}$. We want to show that it holds for $n=k+1$.
Suppose that $a_{1}, \ldots, a_{k}, a_{k+1}$ are mutually distinct positive integers. Let us assume, without loss of generality that $x=a_{k+1}$ is the largest element of the set $\left\{a_{1}, \ldots, a_{k}, a_{k+1}\right\}$. We then obtain:

$$
2\left(\sum_{j=1}^{k+1} a_{j}^{3}\right)^{2}=2\left(\sum_{j=1}^{k} a_{j}^{3}+x^{3}\right)^{2}=2\left(\sum_{j=1}^{k} a_{j}^{3}\right)^{2}+4 x^{3}\left(\sum_{j=1}^{k} a_{j}^{3}\right)+2 x^{6}
$$

By the inductive assumption, this quantity is:

$$
\leq\left(\sum_{j=1}^{k} a_{j}^{5}\right)+\left(\sum_{j=1}^{k} a_{j}^{7}\right)+4 x^{3}\left(\sum_{j=1}^{k} a_{j}^{3}\right)+2 x^{6} .
$$

Since by assumption, $a_{1}, a_{2}, \ldots, a_{k} \leq x-1=a_{k+1}-1$, we obtain that this sum is:

$$
\leq\left(\sum_{j=1}^{k} a_{j}^{5}\right)+\left(\sum_{j=1}^{k} a_{j}^{7}\right)+4 x^{3}\left(\sum_{j=1}^{x-1} j^{3}\right)+2 x^{6}
$$

We now use part a) to deduce that this equals:

$$
\begin{gathered}
\left(\sum_{j=1}^{k} a_{j}^{5}\right)+\left(\sum_{j=1}^{k} a_{j}^{7}\right)+4 x^{3} \cdot\left(\frac{(x-1) \cdot x}{2}\right)^{2}+2 x^{6}= \\
=\left(\sum_{j=1}^{k} a_{j}^{5}\right)+\left(\sum_{j=1}^{k} a_{j}^{7}\right)+x^{7}-2 x^{6}+x^{5}+2 x^{6}= \\
=\left(\sum_{j=1}^{k} a_{j}^{5}\right)+\left(\sum_{j=1}^{k} a_{j}^{7}\right)+x^{7}+x^{5}=\left(\sum_{j=1}^{k+1} a_{j}^{5}\right)+\left(\sum_{j=1}^{k+1} a_{j}^{7}\right)
\end{gathered}
$$

since $x=a_{k+1}$. The claim now follows.
c) From the proof in part b), it follows that equality holds if and only if $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}=$ $\{1,2, \ldots, n\}$. The crucial point was that we had equality in $\sum_{j=1}^{k} a_{j}^{3}=\sum_{j=1}^{x-1} j^{3}$.
Exercise 4. Let the sequence $\left(a_{n}\right)_{n \geq 0}$ be defined as follows:
i) $a_{0}:=0, a_{1}:=1$.
ii) Given $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$, the term a_{n+1} is defined to be the smallest non-negative integer such that there don't exist $i, j \in\{0,1, \ldots, n\}$, with $i \leq j$ such that a_{i}, a_{j}, a_{n+1} are three consecutive terms of an arithmetic sequence, i.e. $a_{i}+a_{n+1}=2 a_{j}$.
a) Find a_{2}, a_{3} and a_{4}.
b) Prove that, for $n \geq 1, a_{n}$ equals the n-th positive integer whose expansion in base 3 doesn't contain the digit 2.
c) Find a_{100}.

Solution:

a) We note that $a_{2}=3$ (it can't equal 2 because $a_{0}=0, a_{1}=1$). Furthermore $a_{3}=4$ and $a_{4}=9$. We note that a_{4} can't equal 5 since $a_{1}=1, a_{2}=3$. It can't equal 6 since $a_{0}=0, a_{3}=3$. It can't equal 7 since $a_{1}=1, a_{3}=4$. Finally, it can't equal 8 since $a_{0}=0, a_{3}=4$. If we choose $a_{4}=9$, then the condition $i i$) will be satisfied.
b) We argue by induction. Namely, we show that, for all $k \geq 1, a_{1}, \ldots, a_{k}$ are the first k positive integers whose expansion in basis 3 doesn't contain the digit 2 .

Base case: $k=1$. The claim holds by condition i).
Inductive step: Suppose that the claim holds holds for some $k \geq 1$. We want to show that it holds for $k+1$.
We are given $a_{0}, a_{1}, \ldots, a_{k}$ and we want to add a_{k+1} according to the rule $\left.i i\right)$. Let x denote the smallest positive integer greater than a_{k} which doesn't contain any digits of 2 in its base three expansion. We want to argue that $a_{k+1}=x$.

Let us first show that $a_{k+1} \leq x$. This will follow if we show that for all $0 \leq i \leq j \leq k$, the numbers a_{i}, a_{j}, x are not the consecutive terms of an arithmetic sequence, i.e. it is not the case that $a_{i}+x=2 a_{j}$. Suppose that it were the case that $a_{i}+x=2 a_{j}$ for some $0 \leq i \leq j \leq k$. Then, we note that the base three expansion of $2 a_{j}$ contains only the digits 0 and 2 . On the other hand, since x is strictly bigger than a_{i}, it follows that there exists a digit where x has a 1 and where a_{i} has a 0 . Let's assume that this is the m-th digit. In particular, since x and a_{i} only have digits 0 and 1 in base 3 , it follows that there are no carries when we add them up and so the m-th digit of $x+a_{i}$ must equal 1. This is a contradiction. Hence, it follows that $a_{k+1} \leq x$.

We now show that $a_{k+1} \geq x$. We again argue by contradiction. Suppose that it were the case that $a_{k+1}<x$. Since $a_{k+1}>a_{k}$ (otherwise, we could take $i=j=k$.), it follows that we would then obtain: $a_{k}<a_{k+1}<x$. By construction of x and by the inductive assumption, it follows that every positive integer which is strictly between a_{k} and x must contain a digit 2 in its base 3 expansion.

Let y and z denote the results of replacing every digit 2 in the base 3 expansion of a_{k+1} by a 0 and by a 1 respectively. Since a_{k+1} was assumed to contain a digit 2 in its base 2 expansion, it follows that:

$$
y<z<a_{k+1}
$$

and

$$
y+a_{k+1}=2 z
$$

Now, y, z contain no digits 2 in their base 3 expansion by definition. Hence, by the inductive assumption, we can find $0 \leq i \leq j \leq k$ such that $y=a_{i}, z=a_{j}$. Consequently:

$$
a_{i}+a_{k+1}=2 a_{j}
$$

This gives us a contradiction.
Hence, it follows that $a_{k+1} \geq x$. Combining this with the fact that $a_{k+1} \leq x$, we now obtain:

$$
a_{k+1}=x
$$

The claim now follows by induction.
c) From part b), we can deduce that, for $n \geq 1, a_{n}$ equals the n-th positive integer whose base 3 expansion doesn't contain the digit 2 . In particular, a_{n} is the result of taking the base 2 expansion of n and replacing the basis of the number system from 2 to 3 , e.g. if $n=(1010)_{2}$ in binary, then $a_{n}=(1010)_{3}$, in base 3. In particular, we note that $100=64+32+4=2^{6}+2^{5}+2^{2}=(1100100)_{2}$. Hence: $a_{100}=(1100100)_{3}=3^{6}+3^{5}+3^{2}=729+243+9=981$.

