
1. Let u(x, y) solve the wave equation

utt = 4uxx, 0 ≤ x ≤ π, t ≥ 0

satisfying the boundary conditions

u(0, t) = 0

u(π, t) = 0

and initial conditions

u(x, 0) = sin(x)− 2 sin(3x)

ut(x, 0) = 0

What is u(π2 ,
π
2 )?

A: −3 B: −1 C:1 D: 3
E: 0 F: −π G: π H: 3π

Separate variables: let u(x, t) = φ(x)g(t). Separating gives us

φ′′ + λφ = 0 φ(0) = φ(π) = 0

g′′ + 4λg = 0 g′(0) = 0.

The answer to the first problem is λ = n2, φ(x) = sin(nx); with this
value of λ, we get g(t) = cos(2nt). Then product solutions are φ(x)g(t) =
sin(nx) cos(2nt), so the general solution is

u(x, t) =

∞∑
n=1

An sin(nx) cos(2nt).

To get the coefficients, we use the initial conditions

u(x, 0) =

∞∑
n=1

An sin(nx) = sin(x)− 2 sin(3x),

so A1 = 1, A3 = −2, and all other An = 0. Thus,

u(x, t) = sin(x) cos(2t)− 2 sin(3x) cos(6t),

and

u(
π

2
,
π

2
) = sin(

π

2
) cos(π)− 2 sin(

3π

2
) cos(3π) = −3,

so the answer is A, −3.



2. The displacement u(x, y, t) of a vibrating rectangular membrane sat-
isfies the PDE

utt = c2(uxx + uyy) 0 ≤ x ≤ π, 0 ≤ y ≤ π

4
, t ≥ 0

with BCs
u(0, y, t) = 0 u(π, y, t) = 0

u(x, 0, t) = 0 ∂u
∂y (x, π4 , t) = 0.

What is the smallest natural frequency of the membrane? (This can be done
without fully solving for u.)

A: c B: 2c C: c
√

2 D: c
√

3

E: c
√

5 F: c
√

8 G: c
√
π H: 0

Separate u(x, y, t) = φ(x, y)h(t); then

∆φ+ λφ = 0

h′′ + c2λh = 0.

Now we separate φ: φ(x, y) = f(x)g(y):

f ′′

f
= −g

′′

g
− λ = µ,

so

f ′′ + µf = 0 f(0) = f(π)

g′′ + (λ− µ)g = 0 g(0) = g′(
π

4
) = 0.

For f , we have µ = m2, and f(x) = sin(nx). For g, we get

g(y) = c1 sin((
√
λ− µ)y) + c2 cos((

√
λ− µ)y);

the boundary conditions g(0) = 0 gives c2 = 0 and g′(π4 ) = 0 gives c1(
√
λ− µ) cos((

√
λ− µ)π4 );

so we need (
√
λ− µ)π4 = 2n−1

2 . Thus,

λ− µ = (4n− 2)2.

So λmn = m2 + (4n− 2)2. Solving for h(t), we get h(t) = c1 cos(c
√
λmnt) +

c2 sin(c
√
λmnt). The natural frequency is c

√
λmn; the smallest is c

√
λ11 =

c
√

5. So the answer is E.



3. Solve the heat equation

ut = k∆u

on a semicircle 0 ≤ r ≤ a, 0 ≤ θ ≤ π with boundary conditions

u(r, 0, t) = 0, u(r, π, t) = 0, u(a, θ, t) = 0

and initial conditions
u(r, θ, 0) = f(r, θ).

Separating u(r, θ, t) = p(x)q(θ)h(t) gives (eventually)

r2p′′ + rp′ + (λr2 − µ)p = 0 p(a) = 0, |p(0)| <∞
q′′ + q = 0 q(0) = q(π) = 0

h′ + λkh = 0.

Then q(θ) = sin(mθ), and µ = m2. Solving for p, we get p(r) = Jm(
√
λr)

(this was on the formula sheet). We use the boundary condition to get λ:
p(a) = Jm(

√
λa) = 0. If zmn are the positive zeroes of Jm, then we want√

λa = zmn, so our eigenvalues are

λmn =
(zmn
a

)2
.

Finally, solving for h gives h(t) = e−λmnkt. Then the solution is given by

u(x, t) =

∞∑
m=1

∞∑
n=1

BmnJm(
√
λmnr) sin(mθ)e−λmnkt.

Plugging in ICs,

u(x, t) =

∞∑
m=1

∞∑
n=1

BmnJm(
√
λmnr) sin(mθ) = f(r, θ)

tells us the coefficients are

Bmn =

∫ π
0

∫ a
0 f(r, θ)Jm(

√
λmnr) sin(mθ)r dr dθ∫ π

0

∫ a
0 Jm(

√
λmnr)2 sin(mθ)2r dr dθ

.



4. Consider the eigenvalue problem

φ′′ + 2xφ′ +
λ

x
φ = 0 φ(1) = φ(2) = 0.

Express this problem in standard Sturm-Liouville form. If φ1, φ2, . . . are the
eigenfunctions of this problem, and

f(x) =

∞∑
n=1

anφn(x),

write a formula for an (in terms of f and φn).

Multiplying the equation by H(x), we get

H(x)φ′′ + 2xH(x)φ′ + λ
H(x)

x
φ = 0;

we want this to look like

d

dx
(p(x)φ′) + (λσ(x) + q(x))φ = 0,

so we need H(x) = p(x) and 2xH(x) = p′(x). Thus, we have p′

p = 2x.

Integrating both sides gives ln p(x) = x2, so p(x) = ex
2
. Then our equation

is

ex
2
φ′′ + 2xex

2
φ′ + λ

ex
2

x
φ = 0;

that is,

d

dx
(ex

2
φ′) + λ

ex
2

x
φ = 0.

The coefficient an is given by the quotient

an =

∫ 2
1 f(x)φn(x) e

x2

x dx∫ 2
1 φn(x)2 e

x2

x dx
.

Note that the limits are taken from the boundary conditions φ(1) = φ(2) =
0.



5. Consider the problem

ut = kuxx 0 ≤ x ≤ 2, t ≥ 0

u(0, t) = cos t

∂u

∂x
(2, t) = e−t

u(x, 0) = 0.

Find a reference temperature r(x, t) such that v = u − r satisfies homoge-
neous boundary conditions. v satisfies a PDE of the form vt = vxx+ Q̄(x, t).
What is Q̄(x, t)?

There are many potential choices for r(x, t). The simplest is probably

r(x, t) = cos t+ xe−t.

Note that we indeed have r(0, t) = cos t, and rx(x, t) = e−t, so in particular
rx(2, t) = e−t.

Then u = v + r. We plug that into the PDE:

(v + r)t = k(v + r)xx.

Rearranging, we get

vt = kvxx + (krxx − rt)

= kvxx + k
∂2

∂x2
(cos t+ xe−t)− ∂

∂t
(cos t+ xe−t)

= kvxx + (sin t+ xe−t).

Thus (for this choice of r), we have Q̄ = sin t+ xe−t.


