1. Let $u(x, y)$ solve the wave equation

$$
u_{t t}=4 u_{x x}, \quad 0 \leq x \leq \pi, t \geq 0
$$

satisfying the boundary conditions

$$
\begin{aligned}
& u(0, t)=0 \\
& u(\pi, t)=0
\end{aligned}
$$

and initial conditions

$$
\begin{aligned}
u(x, 0) & =\sin (x)-2 \sin (3 x) \\
u_{t}(x, 0) & =0
\end{aligned}
$$

What is $u\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$?

$$
\begin{array}{llll}
\text { A: }-3 & \text { B: }-1 & \text { C:1 } & \text { D: } 3 \\
\text { E: } 0 & \text { F: }-\pi & \text { G: } \pi & \text { H: } 3 \pi
\end{array}
$$

Separate variables: let $u(x, t)=\phi(x) g(t)$. Separating gives us

$$
\begin{array}{ll}
\phi^{\prime \prime}+\lambda \phi=0 & \phi(0)=\phi(\pi)=0 \\
g^{\prime \prime}+4 \lambda g=0 & g^{\prime}(0)=0 .
\end{array}
$$

The answer to the first problem is $\lambda=n^{2}, \phi(x)=\sin (n x)$; with this value of λ, we get $g(t)=\cos (2 n t)$. Then product solutions are $\phi(x) g(t)=$ $\sin (n x) \cos (2 n t)$, so the general solution is

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \sin (n x) \cos (2 n t) .
$$

To get the coefficients, we use the initial conditions

$$
u(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin (n x)=\sin (x)-2 \sin (3 x),
$$

so $A_{1}=1, A_{3}=-2$, and all other $A_{n}=0$. Thus,

$$
u(x, t)=\sin (x) \cos (2 t)-2 \sin (3 x) \cos (6 t),
$$

and

$$
u\left(\frac{\pi}{2}, \frac{\pi}{2}\right)=\sin \left(\frac{\pi}{2}\right) \cos (\pi)-2 \sin \left(\frac{3 \pi}{2}\right) \cos (3 \pi)=-3
$$

so the answer is $\mathrm{A},-3$.
2. The displacement $u(x, y, t)$ of a vibrating rectangular membrane satisfies the PDE

$$
u_{t t}=c^{2}\left(u_{x x}+u_{y y}\right) \quad 0 \leq x \leq \pi, 0 \leq y \leq \frac{\pi}{4}, t \geq 0
$$

with BCs

$$
\begin{array}{ll}
u(0, y, t)=0 & u(\pi, y, t)=0 \\
u(x, 0, t)=0 & \frac{\partial u}{\partial y}\left(x, \frac{\pi}{4}, t\right)=0 .
\end{array}
$$

What is the smallest natural frequency of the membrane? (This can be done without fully solving for u.)
A: c
B: $2 c$
C: $c \sqrt{2}$
D: $c \sqrt{3}$
E: $c \sqrt{5}$
F: $c \sqrt{8}$
G: $c \sqrt{\pi} \quad$ H: 0

Separate $u(x, y, t)=\phi(x, y) h(t)$; then

$$
\begin{aligned}
& \Delta \phi+\lambda \phi=0 \\
& h^{\prime \prime}+c^{2} \lambda h=0 .
\end{aligned}
$$

Now we separate $\phi: \phi(x, y)=f(x) g(y)$:

$$
\frac{f^{\prime \prime}}{f}=-\frac{g^{\prime \prime}}{g}-\lambda=\mu,
$$

so

$$
\begin{aligned}
& f^{\prime \prime}+\mu f=0 \quad f(0)=f(\pi) \\
& g^{\prime \prime}+(\lambda-\mu) g=0 \quad g(0)=g^{\prime}\left(\frac{\pi}{4}\right)=0 .
\end{aligned}
$$

For f, we have $\mu=m^{2}$, and $f(x)=\sin (n x)$. For g, we get

$$
g(y)=c_{1} \sin ((\sqrt{\lambda-\mu}) y)+c_{2} \cos ((\sqrt{\lambda-\mu}) y)
$$

the boundary conditions $g(0)=0$ gives $c_{2}=0$ and $g^{\prime}\left(\frac{\pi}{4}\right)=0$ gives $c_{1}(\sqrt{\lambda-\mu}) \cos \left((\sqrt{\lambda-\mu}) \frac{\pi}{4}\right)$; so we need $(\sqrt{\lambda-\mu}) \frac{\pi}{4}=\frac{2 n-1}{2}$. Thus,

$$
\lambda-\mu=(4 n-2)^{2} .
$$

So $\lambda_{m n}=m^{2}+(4 n-2)^{2}$. Solving for $h(t)$, we get $h(t)=c_{1} \cos \left(c \sqrt{\lambda_{m n}} t\right)+$ $c_{2} \sin \left(c \sqrt{\lambda_{m n}} t\right)$. The natural frequency is $c \sqrt{\lambda_{m n}}$; the smallest is $c \sqrt{\lambda_{11}}=$ $c \sqrt{5}$. So the answer is E .
3. Solve the heat equation

$$
u_{t}=k \Delta u
$$

on a semicircle $0 \leq r \leq a, 0 \leq \theta \leq \pi$ with boundary conditions

$$
u(r, 0, t)=0, u(r, \pi, t)=0, u(a, \theta, t)=0
$$

and initial conditions

$$
u(r, \theta, 0)=f(r, \theta) .
$$

Separating $u(r, \theta, t)=p(x) q(\theta) h(t)$ gives (eventually)

$$
\begin{aligned}
& r^{2} p^{\prime \prime}+r p^{\prime}+\left(\lambda r^{2}-\mu\right) p=0 \quad p(a)=0,|p(0)|<\infty \\
& q^{\prime \prime}+q=0 \quad q(0)=q(\pi)=0 \\
& h^{\prime}+\lambda k h=0 .
\end{aligned}
$$

Then $q(\theta)=\sin (m \theta)$, and $\mu=m^{2}$. Solving for p, we get $p(r)=J_{m}(\sqrt{\lambda} r)$ (this was on the formula sheet). We use the boundary condition to get λ : $p(a)=J_{m}(\sqrt{\lambda} a)=0$. If $z_{m n}$ are the positive zeroes of J_{m}, then we want $\sqrt{\lambda} a=z_{m n}$, so our eigenvalues are

$$
\lambda_{m n}=\left(\frac{z_{m n}}{a}\right)^{2}
$$

Finally, solving for h gives $h(t)=e^{-\lambda_{m n} k t}$. Then the solution is given by

$$
u(x, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} B_{m n} J_{m}\left(\sqrt{\lambda_{m n}} r\right) \sin (m \theta) e^{-\lambda_{m n} k t} .
$$

Plugging in ICs,

$$
u(x, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} B_{m n} J_{m}\left(\sqrt{\lambda_{m n}} r\right) \sin (m \theta)=f(r, \theta)
$$

tells us the coefficients are

$$
B_{m n}=\frac{\int_{0}^{\pi} \int_{0}^{a} f(r, \theta) J_{m}\left(\sqrt{\lambda_{m n}} r\right) \sin (m \theta) r d r d \theta}{\int_{0}^{\pi} \int_{0}^{a} J_{m}\left(\sqrt{\lambda_{m n}} r\right)^{2} \sin (m \theta)^{2} r d r d \theta} .
$$

4. Consider the eigenvalue problem

$$
\phi^{\prime \prime}+2 x \phi^{\prime}+\frac{\lambda}{x} \phi=0 \quad \phi(1)=\phi(2)=0 .
$$

Express this problem in standard Sturm-Liouville form. If $\phi_{1}, \phi_{2}, \ldots$ are the eigenfunctions of this problem, and

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \phi_{n}(x),
$$

write a formula for a_{n} (in terms of f and ϕ_{n}).
Multiplying the equation by $H(x)$, we get

$$
H(x) \phi^{\prime \prime}+2 x H(x) \phi^{\prime}+\lambda \frac{H(x)}{x} \phi=0
$$

we want this to look like

$$
\frac{d}{d x}\left(p(x) \phi^{\prime}\right)+(\lambda \sigma(x)+q(x)) \phi=0
$$

so we need $H(x)=p(x)$ and $2 x H(x)=p^{\prime}(x)$. Thus, we have $\frac{p^{\prime}}{p}=2 x$. Integrating both sides gives $\ln p(x)=x^{2}$, so $p(x)=e^{x^{2}}$. Then our equation is

$$
e^{x^{2}} \phi^{\prime \prime}+2 x e^{x^{2}} \phi^{\prime}+\lambda \frac{e^{x^{2}}}{x} \phi=0 ;
$$

that is,

$$
\frac{d}{d x}\left(e^{x^{2}} \phi^{\prime}\right)+\lambda \frac{e^{x^{2}}}{x} \phi=0
$$

The coefficient a_{n} is given by the quotient

$$
a_{n}=\frac{\int_{1}^{2} f(x) \phi_{n}(x) \frac{e^{x^{2}}}{x} d x}{\int_{1}^{2} \phi_{n}(x)^{2} \frac{e^{x^{2}}}{x} d x} .
$$

Note that the limits are taken from the boundary conditions $\phi(1)=\phi(2)=$ 0 .
5. Consider the problem

$$
\begin{aligned}
& u_{t}=k u_{x x} \quad 0 \leq x \leq 2, \quad t \geq 0 \\
& u(0, t)=\cos t \\
& \frac{\partial u}{\partial x}(2, t)=e^{-t} \\
& u(x, 0)=0
\end{aligned}
$$

Find a reference temperature $r(x, t)$ such that $v=u-r$ satisfies homogeneous boundary conditions. v satisfies a PDE of the form $v_{t}=v_{x x}+\bar{Q}(x, t)$. What is $\bar{Q}(x, t)$?

There are many potential choices for $r(x, t)$. The simplest is probably

$$
r(x, t)=\cos t+x e^{-t} .
$$

Note that we indeed have $r(0, t)=\cos t$, and $r_{x}(x, t)=e^{-t}$, so in particular $r_{x}(2, t)=e^{-t}$.

Then $u=v+r$. We plug that into the PDE:

$$
(v+r)_{t}=k(v+r)_{x x} .
$$

Rearranging, we get

$$
\begin{aligned}
v_{t} & =k v_{x x}+\left(k r_{x x}-r_{t}\right) \\
& =k v_{x x}+k \frac{\partial^{2}}{\partial x^{2}}\left(\cos t+x e^{-t}\right)-\frac{\partial}{\partial t}\left(\cos t+x e^{-t}\right) \\
& =k v_{x x}+\left(\sin t+x e^{-t}\right) .
\end{aligned}
$$

Thus (for this choice of r), we have $\bar{Q}=\sin t+x e^{-t}$.

