On the purity conjecture of Nisnevich for torsors under reductive group schemes

Roman Fedorov

University of Pittsburgh

January 27, 2022
References and the plan

- ArXiv:2109.10332
- These slides:
 - pitt.edu/~fedorov/NisnevichConjSlides.pdf

Plan:

- Formulation of Nisnevich’s purity Conjecture
- Proof of Nisnevich’s purity Conjecture (under some conditions)
- Abstract formulation of the Grothendieck–Serre and Nisnevich’s purity Conjectures.
- Counterexamples to Nisnevich’s purity Conjecture.
Conjecture

Let R be a regular semilocal integral domain. Let G be a reductive group scheme over R. Let E be a G-torsor. If the restriction of E to the fraction field of R is trivial, then E is trivial.

Known cases

- R is a DVR.
- G is a torus.
- R contains a field.
- R is unramified over a DVR, G is quasisplit.
Nisnevich purity conjecture

Conjecture

Let R be a regular semilocal integral domain. Let G be a reductive group scheme over R. Let $f \in R$ be such that for all maximal ideals $m \subset R$ we have $f \notin m^2$. Let E be a G-torsor over R_f. If the restriction of E to the fraction field of R is trivial, then E is trivial.

Previously known cases

- $G = \text{GL}_n$, R is local and contains a field. (Bhatwadekar–Rao’83, Popescu’02). And this is non-trivial!
- $\dim R = 1$ (reduces to Grothendieck–Serre).
- R is local of dimension 2, the residue field is infinite, G is quasi-split (Nisnevich’89).

False unless G satisfies an isotropy condition.
Let G be a semisimple group scheme over a connected scheme U. There is a sequence U_1, \ldots, U_r of finite étale connected U-schemes such that

$$G^{\text{ad}} \simeq \prod_{i=1}^r G^i,$$

where G^i is the Weil restriction of a simple U_i-group scheme. Note that the group schemes G^i are uniquely defined by G up to isomorphism. Recall that a semisimple group scheme G over a scheme S is called isotropic, if it contains a non-trivial split torus. If S is connected and semilocal, G is isotropic if and only if it contains a proper parabolic subgroup scheme.

Definition

We say that a semisimple U-group scheme G is strongly locally isotropic if each factor G^i of G^{ad} is isotropic Zariski locally over U.

Roman Fedorov
Nisnevich Conjecture
Grothendieck–Serre conjecture for families

Theorem (Panin–Stavrova–Vavilov’15, Fedorov’22)

Let R be a semilocal integral domain geometrically regular over a field k; denote by K the fraction field of R. Let G be a reductive group scheme over R such that its adjoint group scheme G^{ad} is strongly locally isotropic. Let A be a k-algebra. Let E be a G-torsor over $R \otimes_k A$. If the restriction of E to $K \times_k A$ is trivial, then E is trivial.
The main theorem

Theorem

Let R be a regular semilocal integral domain containing a field k. Assume that k is infinite or that the inclusion homomorphism $k \rightarrow R$ admits a left inverse. Let G be a reductive group scheme over R such that G^{ad} is strongly locally isotropic. Let $f \in R$ be such that for all maximal ideals $m \subset R$ we have $f \notin m^2$. Let E be a G-torsor over R_f. If the restriction of E to the fraction field of R is trivial, then E is trivial.

By Popescu’s Theorem, we may assume that $R = \mathcal{O}_{X,x}$, where X is an integral smooth affine scheme over a field k, x is a finite set of closed points of X. We may also assume that the group scheme G is defined over X. Finally, we may assume that f can be extended to a function on X.
Main reductions

Proposition

Let X be an integral affine scheme smooth over a field k, x be a finite set of closed points X, and set $R := \mathcal{O}_{X,x}$. Let G be a reductive group scheme over X. Let $f \in k[X]$ be a non-zero function such that the hypersurface $\{f = 0\}$ is smooth over k. Let \mathcal{E} be a generically trivial G-torsor over R_f. Then there are

- A section $s \in \mathbb{A}^1_R(R)$;
- R-finite closed subschemes $Y \subset Z \subset \mathbb{A}^1_R$ such that Y is R-étale and $f|_{s^{-1}(Y)} = 0$;
- an element

$$\mathcal{E}' \in \text{Ker}\left(H^1(\mathbb{A}^1_R - Y, G) \to H^1(\mathbb{A}^1_R - Z, G)\right),$$

such that $(s|_{R_f})^* \mathcal{E}' = \mathcal{E}$.
Proposition

Let R be a regular semilocal integral domain containing a field k. Assume that k is infinite or that the inclusion homomorphism $k \to R$ admits a left inverse. Let G be a reductive group scheme over R such that its adjoint group scheme G^{ad} is strongly locally isotropic. Let $Y \subset Z \subset \mathbb{A}^1_R$ be closed subschemes finite over R such that Y is étale over R. Let E be a G-torsor over $\mathbb{A}^1_R - Y$ whose restriction to $\mathbb{A}^1_R - Z$ is trivial. Then E is trivial.
Case 1: \(Y \) is “constant”, that is, of the form \(Y_0 \times_k \text{Spec} \ R \). We apply Grothendieck–Serre for families: it is enough to check that \(\mathcal{E} \) is trivial over \(\mathbb{A}^1_K - Y_K \). However, a generically trivial torsor over a Zariski open subset of \(\mathbb{A}^1_K \) is trivial.
Proof of the proposition

Case 2: Y decomposes as $\bigsqcup_{i=1}^{d} Y_i$, where for each i the restriction of the projection $\mathbb{A}_R^1 \to \text{Spec } R$ to Y_i is an isomorphism. Because of our assumption on R we have $d \leq |k|$. Let t_1, \ldots, t_d be distinct elements of k. We construct a closed R-embedding $\iota: Z_{(2)} \hookrightarrow \mathbb{A}_R^1$ such that $\iota(Y_i) = t_i \times_k \text{Spec } R$. We get an elementary distinguished square

$$
\begin{array}{ccc}
W - Z & \longrightarrow & W - Y \\
\downarrow & & \downarrow \\
A_R^1 - Z' & \longrightarrow & A_R^1 - Y_0 \times_k \text{Spec } R,
\end{array}
$$

where W is a Zariski neighborhood of Z. We use this square to descend E onto $A_R^1 - Y_0 \times_k \text{Spec } R$. By case 1 the descended torsor is trivial. Thus E is trivial on $W - Y$.
Proof of the proposition

General case: define $d(Y/\text{Spec } R)$ as the difference between $\deg(Y/\text{Spec } R)$ and the number of connected components of Y. We induct on $d(Y/\text{Spec } R)$. The case $d(Y/\text{Spec } R) = 0$ is exactly Case 2. Now we prove the induction step.
Proof of the proposition

Let V be a connected component of Y of degree at least two, we pullback the whole picture along $V \to \text{Spec } R$: $Y' := Y \times_R V$, $Z' := Z \times_R V$, $\mathcal{E}' := \mathcal{E}|_{\mathbb{A}^1_Y - Y'}$. Let $\Delta \subset V \times_R V \subset Y'$ be the "diagonal component"; we have $d(Y'/V) < d(Y/\text{Spec } R)$. By the induction hypothesis \mathcal{E}' is trivial.

The étale morphism $\phi: \mathbb{A}^1_V \to \mathbb{A}^1_R$ maps Δ isomorphically onto V. Let W be a Zariski neighborhood of Δ in \mathbb{A}^1_V such that $\phi^{-1}(V) \cap W = \Delta$. Then the square

$$
\begin{array}{ccc}
W - Y' & \longrightarrow & W - (Y' - \Delta) \\
downarrow & & \downarrow \\
\mathbb{A}^1_R - Y & \longrightarrow & \mathbb{A}^1_R - (Y - V)
\end{array}
$$

is an elementary distinguished square. We use it to extend \mathcal{E} to $\mathbb{A}^1_R - (Y - V)$. Now apply the induction hypothesis.
Definition

Let X be a Noetherian scheme. We say that a Noetherian X-scheme Y is *essentially smooth* over X if it is a filtered inverse limit of smooth X-schemes with transition morphisms being open affine embeddings.

We denote by Sm_X' the full subcategory of the category of X-schemes whose objects are Noetherian schemes essentially smooth over X.

An important example of an essentially smooth scheme is the following: let X be an affine scheme, let x be a finite set of schematic points of X, let $\mathcal{O}_{X,x}$ be the semilocal ring of x, then $\text{Spec} \mathcal{O}_{X,x}$ is an object of Sm_X'.

Roman Fedorov

Nisnevich Conjecture
Lemma

(i) Let X, Y, and Z be Noetherian schemes such that Y be essentially smooth over X and Z be essentially smooth over Y. Then Z is essentially smooth over X.

(ii) A base change of an essentially smooth morphism is essentially smooth.
Definition of Nisnevich semisheaf

An elementary distinguished square is a Cartesian diagram of schemes:

\[
\begin{array}{ccc}
U \times_X V & \longrightarrow & V \\
\downarrow & & \downarrow^p \\
U & \longrightarrow & X,
\end{array}
\]

where \(p \) is étale, \(j \) is an open embedding, and \(p^{-1}(X - U) \rightarrow X - U \) is an isomorphism.

Let \(X \) be a Noetherian scheme and \(F \) be a presheaf of pointed sets on \(Sm'/X \). We say that \(F \) is a Nisnevich semisheaf of pointed sets if for any elementary distinguished square in \(Sm'/X \) the corresponding map

\[
F(X) \rightarrow F(U) \times_{F(U \times_X V)} F(V)
\]

is surjective.
We will formulate the properties under which F satisfies a Grothendieck–Serre type statement.

(Lim) F commutes with filtered inverse limits, provided that the transition morphisms are open embeddings.

(Sec) Let $U \in \text{Ob}(Sm'/X)$ be an affine integral semilocal scheme such that all its closed points are finite over k. Assume that Z is a closed subscheme of \mathbb{A}^1_U finite over U. Let $E \in \ker(F(\mathbb{A}^1_U) \to F(\mathbb{A}^1_U - Z))$,

then for every section $\Delta : U \to \mathbb{A}^1_U$ of the projection $\mathbb{A}^1_U \to U$ we have $\Delta^*E = *$.
(LT) Assume that W is an affine integral semilocal k-scheme such that all its closed points are finite over k, and let $U \subset W$ be a closed subscheme. Assume that we are given two essentially smooth k-morphisms $p_1, p_2 : W \to X$ such that $p_1|_U = p_2|_U$, and this morphism is essentially smooth. Then there is a finite étale k-morphism $\pi : W' \to W$ with a section $\Delta : U \to W'$ and an isomorphism of presheaves $(p_1 \circ \pi)^*F \cong (p_2 \circ \pi)^*F$ restricting to the identity isomorphism on U.

This property requires some explanation. First of all, $p_i \circ \pi$ are essentially smooth by the lemma, so the pullbacks of presheaves make sense (again, by the lemma). The isomorphism amounts to compatible bijections for any essentially smooth $\psi : T \to W'$:

$$F(T, p_1 \circ \pi \circ \psi) \cong F(T, p_2 \circ \pi \circ \psi).$$
Finally, the condition that this isomorphism restricts to the identity on U amounts to having for every ψ as above a commutative diagram

$$
\begin{array}{ccc}
F(T, p_1 \circ \pi \circ \psi) & \xrightarrow{\sim} & F(T, p_2 \circ \pi \circ \psi) \\
\downarrow & & \downarrow \\
F(T \times_{W} U, p_1 \circ \pi \circ \psi \circ pr_1) & \cong & F(T \times_{W} U, p_2 \circ \pi \circ \psi \circ pr_1),
\end{array}
$$

where pr_1 denotes the projection $T \times_{W} U \rightarrow T$. Here the bottom identification comes from the fact that both morphisms are equal:

$$p_i \circ \pi \circ \psi \circ pr_1 = p_i \circ \pi \circ \Delta \circ pr_2 = (p_i|_U) \circ pr_2.$$

(In particular, this morphism is essentially smooth.)
Theorem

Let X be a smooth integral affine k-scheme, where k is a field. Let F be a Nisnevich semisheaf on Sm'/X satisfying properties (Lim), (LT), and (Sec) above. Then for any finite set of schematic points $y \subset X$ the map $F(\mathcal{O}_{X,y}) \to F(K(X))$, where $K(X)$ is the fraction field of X, has a trivial kernel.

Goes back to Colliot–Thélène and Ojanguren’92, [“Espaces principaux homogènes localement triviaux”, Thm 1.1] if G comes from the field.
In the notation of the theorem assume that the Nisnevich semisheaf F satisfies properties (Lim), (LT), and a property stronger than (Sec):

(SecF) Let $U \in \text{Ob}(Sm'/X)$ be an integral affine semilocal scheme such that all its closed points are finite over k. Assume that Z is a closed subscheme of \mathbb{A}^1_U finite over U. Let $Y \in \text{Ob}(Sm'/k)$ be an affine scheme, and

$$\mathcal{E} \in \text{Ker} \left(F(\mathbb{A}^1_U \times_k Y) \to F((\mathbb{A}^1_U - Z) \times_k Y) \right),$$

then for every section $\Delta : U \times_k Y \to \mathbb{A}^1_U \times_k Y$ of the projection $\mathbb{A}^1_U \times_k Y \to U \times_k Y$ we have $\Delta^* \mathcal{E} = *$.

Then for any finite set of schematic points $y \subset X$ and any affine scheme $Y \in \text{Ob}(Sm'/k)$ the map

$$F(O_{X,y} \otimes_k k[Y]) \to F(K(X) \otimes_k k[Y]),$$

where $K(X)$ is the fraction field of X, has a trivial kernel.
Let \(X \) be a smooth integral affine \(k \)-scheme, where \(k \) is a field. Let \(F \) be a Nisnevich semisheaf on \(\text{Sm}'/X \) satisfying properties (Lim), (LT), and (SecF) above as well as:

\(\text{(A1F)} \) Let \(K \) be the function field of \(X \). Then the map \(F(K[t]) \rightarrow F(K(t)) \) has a trivial kernel.

Let \(y \subset X \) be a finite set of schematic points, let \(f \in k[X] \) be such that for any \(y \in y \) we have \(f \notin m_y^2 \). Assume additionally that \(k \) is infinite or one of the points \(y \in y \) is \(k \)-rational. Then the map

\[
F((\mathcal{O}_{X,y})_f) \rightarrow F(K)
\]

has a trivial kernel.
Counterexamples

Theorem

There is a regular local ring R containing an infinite field, a simple simply-connected group scheme G over R, and a generically trivial G-torsor E over \mathbb{A}^1_R that cannot be extended to \mathbb{P}^1_R.

This contradicts Nisnevich’s Conjecture for $R[t]_0$. The theorem is derived from the proposition:

Proposition

Let B be an integral Noetherian normal local ring that is not a field. Assume that B contains an infinite field. Let G be a semisimple B-group scheme anisotropic over the fraction field of B. Then there is a maximal ideal $\mathfrak{m} \subset B[t]$ and a generically trivial G-torsor E over $\mathbb{A}^1_{B[t]}$ that cannot be extended to $\mathbb{P}^1_{B[t]}$.

Roman Fedorov
Nisnevich Conjecture
Preparation for the proof

- There is a finite étale cover $\text{Spec } B' \to \text{Spec } B$ and a k-group scheme G such that $G_{B'} \cong G \times_k \text{Spec } B'$.
- We construct a closed B-embedding $\text{Spec } B' \to \mathbb{A}^1_B - (0 \times \text{Spec } B)$.

\[
\text{Mor}_k(\mathbb{A}^1_{B'}, \text{Gr}_G) = \left\{ (\mathcal{E}, \tau), \mathcal{E} \text{ is a } G \text{-torsor over } \mathbb{A}^1_k \times \mathbb{P}^1_B, \tau \text{ is a trivialization on } \mathbb{A}^1_k \times (\mathbb{P}^1_B - \text{Spec } B') \right\}.
\]

And a similar statement is true with \mathbb{A}^1 replaced with \mathbb{P}^1.
(Here Gr_G stands for the affine Grassmannian, see [Fedorov, “Affine Grassmannians of group schemes and exotic principal bundles over \mathbb{A}^1”].)
The construction

- Construct a morphism $\mathbb{A}_B^1 \to Gr_G$ that cannot be extended to \mathbb{P}_B^1.
- Use the previous bijection to get a G-torsor over $\mathbb{A}_k^1 \times \mathbb{P}_B^1$, with a trivialization τ on $\mathbb{A}_k^1 \times (\mathbb{P}_B^1 - \text{Spec } B')$.
- It cannot be extended to a torsor over $\mathbb{P}_k^1 \times \mathbb{P}_B^1$, with a trivialization on $\mathbb{P}_k^1 \times (\mathbb{P}_B^1 - \text{Spec } B')$.
- It remains to show that there is a maximal ideal $m \subset B[t]$ such that the restriction of \mathcal{E} to $\mathbb{A}_k^1 \times \text{Spec } B[t]_m$ cannot be extended to $\mathbb{P}_k^1 \times \text{Spec } B[t]_m$.
The last item is accomplished via the following proposition, which follows easily from results of [Fedorov, “Affine Grassmannians of group schemes and exotic principal bundles over \mathbb{A}^1”].

Proposition

(i) Let X be an integral Noetherian normal k-scheme. Assume that $H \to X$ is a semisimple group scheme such that $H_k(X)$ is anisotropic. Let E be a generically trivial H-torsor over $\mathbb{A}^1_k \times X$. Then E can be extended to $\mathbb{P}^1_k \times X$ if and only if for all closed points $x \in X$ the restriction of E to $\mathbb{A}^1_k \times \text{Spec} \mathcal{O}_{X,x}$ can be extended to $\mathbb{P}^1_k \times \text{Spec} \mathcal{O}_{X,x}$.

(ii) The extension from part (i) is unique (if it exists) in the following sense. Let E_1 and E_2 be H-torsors over $\mathbb{P}^1_k \times X$ and let $\tau_i : E \to E_i|_{\mathbb{A}^1_k \times X}$ be isomorphisms. Then there is a unique isomorphism of H-torsors $\phi : E_1 \to E_2$ such that $\phi|_{\mathbb{A}^1_k \times X} = \tau_2 \circ \tau_1^{-1}$.

Roman Fedorov

Nisnevich Conjecture