Math $240 \quad$ Fall 2012
 Sample Exam 2 with Solutions

Contents

1 Problems 2
2 Solution key 12
3 Solutions 13

1 Problems

(1) Let A be the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

Find the sum of the entries in the first row of A^{-1}.
(A) -2
(B) 2
(C) 0
(D) 6
(E) -6
(F) 3

Solution Key: 21 Solution: 3.1
(2) The determinant of the matrix

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 \\
1 & -1 & 1 & 4 \\
5 & 6 & 0 & 1
\end{array}\right)
$$

equals
(A) 0
(B) -8
(C) 3
(D) 6
(E) -2
(F) 2

Solution Key: 2.2
(3) Which of the following collections of vectors form subspaces in \mathbb{R}^{3} ?
(i) $S=\left\{\left[a_{1}, a_{2}, a_{3}\right] \mid a_{1}, a_{2}, a_{3}\right.$ are integers $\}$;
(ii) $S=\left\{\left[a_{1}, a_{2}, a_{3}\right] \mid a_{1}+a_{2}=5\right\}$;
(iii) $S=\left\{\left[a_{1}, a_{2}, a_{3}\right] \mid a_{1}+5 a_{2}=0\right\}$;
(A) (i) and (iii)
(B) (i), (ii), and (iii)
(C) none
(D) (ii)
(E) (iii)
(F) (i) and (ii)

Solution Key: 2.3
Solution: 3.3
(4) Find all values of λ for which the vectors

$$
\left(\begin{array}{c}
2 \\
-1 \\
\lambda
\end{array}\right), \quad\left(\begin{array}{c}
5 \\
2 \lambda \\
0
\end{array}\right), \quad\left(\begin{array}{c}
1 \\
10 \\
0
\end{array}\right)
$$

are linearly dependent.
(A) $\lambda=25,0$
(B) $\lambda=4$
(C) $\lambda= \pm 1$
(D) $\lambda=-1,3,6$
(E) $\lambda=8$
(F) all λ

Solution Key: 2,4
Solution: 3.4
(5) Let S be the collection of all vectors in \mathbb{R}^{5} whose first and last coordinate equal each other. S is a subspace in \mathbb{R}^{5}. What is its dimension?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
(F) 5

Solution Key: 2,5
Solution: 3.5
(6) Which of the following collections of matrices form a subspace in the vector space $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$?
(a) All symmetric matrices;
(b) All non-singular matrices;
(c) All singular matrices;
(d) All matrices that commute with a fixed matrix B.
(A) only (a)
(B) only (b)
(C) only (c)
(D) only (d)
(E) only (b) and (c)
(F) only (a) and (d)

Solution Key: 2.6 Solution: 3.6
(7) True or false. To receive any credit, you must also give a reason or counterexample.
(i) The vector space P of all polynomials in x with real coefficients is finite dimensional.
(ii) The functions $x, 1+x$ and $\sin (x)$ are linearly independent in the vector space of differentiable functions on the interval $[0,1]$.
(iii) The polynomials $2+x, x, x^{2}$ span the space P_{2} of all polynomials of degree ≤ 2.
(iv) If three vectors v_{1}, v_{2}, and v_{3} in \mathbb{R}^{3} span all of \mathbb{R}^{3}, then v_{1}, v_{2}, and v_{3} are linearly independent.

Solution Key: 2.7
Solution: 3.7
(8) Consider the matrix

$$
A=\left[\begin{array}{ccccc}
1 & -3 & 0 & -1 & 2 \\
3 & -9 & -1 & -6 & 5 \\
2 & -6 & 0 & -2 & 4 \\
1 & -3 & 1 & 2 & 3
\end{array}\right]
$$

Which of the following statements is false
(A) $\operatorname{dim}(\operatorname{rowspace}(A))=2$
(B) $\operatorname{dim}(\operatorname{rowspace}(A))+\operatorname{dim}(\operatorname{nullspace}(A))=4$
(C) $\operatorname{dim}(\operatorname{rowspace}(A))+\operatorname{dim}(\operatorname{columnspace}(A))=4$
(D) $\operatorname{dim}(\operatorname{columnspace}(A))+\operatorname{dim}(\operatorname{null} \operatorname{space}(A))=5$
(E) $\operatorname{null} \operatorname{space}(A) \neq\{\overrightarrow{0}\}$
(F) $\operatorname{dim}(\operatorname{columnspace}(A))=2$

Solution Key: 2. 8
Solution: 3.8
(9) Let A be the matrix in problem 1,8 . Which of the following vectors belongs to the column space of A ?
(A) $\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 2\end{array}\right]$
(B) $\left[\begin{array}{l}1 \\ 2 \\ 2 \\ 2\end{array}\right]$
(C) $\left[\begin{array}{c}-1 \\ -4 \\ 4 \\ 0\end{array}\right]$
(D) $\left[\begin{array}{l}7 \\ 7 \\ 7 \\ 7\end{array}\right]$
(E) $\left[\begin{array}{l}0 \\ 1 \\ 7 \\ 0\end{array}\right]$
(F) $\left[\begin{array}{c}0 \\ -3 \\ 1 \\ 0\end{array}\right]$

Solution Key: 2,9
Solution: 3.9
(10) Let A be the matrix in problem 1.8. Let
$\left[\begin{array}{c}x_{1} \\ 0 \\ x_{3} \\ 0 \\ 1\end{array}\right]$
be a vector in the null space of A. What is the value of $x_{1}+x_{3}$?
(A) 2
(B) 1
(C) -2
(D) -3
(E) -1
(F) 0

Solution Key: 2.10

2 Solution key

(1) (C)
(2) (F)
(3) (E)
(4) (A)
(5) (E)
(6) (F)
(7) (i) is false, (ii) is true, (iii) is true, (iv) is true
(8) (B).
(9) (B).
(10) (D).

3 Solutions

Solution of problem 1.1: Using Gaussian elimination we find

$$
\begin{aligned}
(A \mid I)= & \left(\begin{array}{lll|lll}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{lll|lll}
1 & 2 & 0 & 1 & 0 & -3 \\
0 & 1 & 0 & 0 & 1 & -2 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{lll|lcc}
1 & 0 & 0 & 1 & -2 & 1 \\
0 & 1 & 0 & 0 & 1 & -2 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Hence

$$
A^{-1}=\left(\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right)
$$

and the sum of the entries in the first row is 0 . The correct answer is (C).

Solution of problem 1.2: We will compute $\operatorname{det}(A)$ by row reduction. We can simplify the calculation by noticing that A is almost upper triangular and so A^{T} will be almost lower trinagular. This makes makes it
easy to compute the row echelon form of A. So

$$
\begin{aligned}
\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right) & =\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & 1 & 5 \\
0 & 2 & -1 & 6 \\
0 & 0 & 1 & 0 \\
0 & 0 & 4 & 1
\end{array}\right) \\
& =2 \operatorname{det}\left(\begin{array}{cccc}
1 & 1 & 1 & 5 \\
0 & 1 & -\frac{1}{2} & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 4 & 1
\end{array}\right) \quad\left[R_{2} \mapsto \frac{1}{2} R_{2}\right] \\
& =2 \operatorname{det}\left(\begin{array}{cccc}
1 & 1 & 1 & 5 \\
0 & 1 & -\frac{1}{2} & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad\left[R_{4} \mapsto R_{4}-4 R_{3}\right] \\
& =2
\end{aligned}
$$

The correct answer is (F).

Solution of problem 1.3: The collection (i) is not a subspace. Indeed, the sum of two vectors with integral coordinates will again be a vector with integral coordinates. However if we scale a vector with integral coordinates by an arbitrary real number. The resulting vector will not have integral coordinates. For instance (1/2) $\cdot[1,0,0]=[1 / 2,0,0]$ does not have integral coordinates.

The collection (ii) is not a subspace since it is the set of solutions of an inhomogeneous linear equation.

The collection (iii) is a subspace since it is the set of solutions of a homogeneous linear equation. The correct answer is (E).

Solution of problem 1.4: The vectors will be linearly dependent if and only the matrix

$$
A=\left(\begin{array}{ccc}
2 & -1 & \lambda \\
5 & 2 \lambda & 0 \\
1 & 10 & 0
\end{array}\right)
$$

is not of maximal rank, i.e. when $\operatorname{det}(A)=0$. Expanding this determinant by the last column we get

$$
\operatorname{det}(A)=\lambda \cdot(-1)^{1+2} \operatorname{det}\left(\begin{array}{ll}
5 & 2 \lambda \\
1 & 10
\end{array}\right)=-\lambda(50-2 \lambda)
$$

The vectors will be linearly dependent when $\lambda=0$ or when $\lambda=25$. The correct answer is (A).

Solution of problem 11.5: By definition S consists of all vectors $\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right.$] such that $x_{1}=x_{5}$. In other words S is the space of solutions of the homogeneous linear system (consistinbg of a single equation):

$$
x_{1}-x_{5}=0
$$

The coefficient matrix for this system is

$$
A=[1,0,0,0,-1] .
$$

This matrix is already in a row echelon form and has rank 1 . Thus the nullspace S of A has dimension

$$
\operatorname{dim} S=(\# \text { of variables })-\operatorname{rank}(A)=5-1=4
$$

The correct answer is (E).

Solution of problem 1.6: The collection (a) is a subspace. Indeed, a matrix A belongs to this collection if and olnly of A satisfies $A^{T}=A$. By the properties of the transpose we know that $(A+B)^{T}=A^{T}+B^{T}$, and $(c A)^{T}=c A^{T}$. In particular, if A and B are symmetric and so satisfy $A^{T}=A$ and $B^{T}=B$, we have that $(A+B)^{T}=A^{T}+B^{T}=A+B$, i.e. $A+B$ is also symmetric. Similarly, if A is symmetric and so satisfies $A^{T}=A$, we have that $(c A)^{T}=c A^{T}=c A$, i.e. $c A$ is symmetric as well.

The collection (b) is not a subspace since it does not contain the zero matrix.

The collection (c) is not a subspace since the sum of two singular matrices can be non-singular. Indeed, the diagonal matrices

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \text { and }\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

both have determinants equal to zero and are thus singular. On the other hand they add up to the identity matrix which has determinant 1 and is non-singular.

The collection (d) is a subspace. Indeed this collection consists of all 2×2 matrices A that satisfy $A B=B A$. If A_{1} and A_{2} are two such matrices, then their sum also satifies this condition because of the distributivity of matrix multiplication: $\left(A_{1}+A_{2}\right) B=A_{1} B+A_{2} B=$ $B A_{1}+B A_{2}=B\left(A_{1}+A_{2}\right)$. Similarly, if A commutes with B, then any scaling of A commutes with B due to the property $c(A B)=(c A) B=$ $A(c B)$.
The correct answer is (F).

Solution of problem 1.7: (i) is false: the infinite collection of all monomials $\left\{1, x, x^{2}, \ldots, x^{n}, \ldots\right\}$ is linearly indepentent since any finite linear combination of monomials is a polynomial, and a polynomial is the zero polynomial if and only if all of its coefficients are zero. Since P contains infinitely many linearly independent vectors, it can not be finite dimensional.
(ii) is true: The Wronskian for these functions is

$$
W(x)=\operatorname{det}\left[\begin{array}{ccc}
x & 1+x & \sin x \\
1 & 1 & \cos x \\
0 & 0 & -\sin x
\end{array}\right]=-x \sin x+(1+x) \sin x=\sin x
$$

Since we can find a point in $[0,1]$ where the Wronskian does not vanish, e.g. the point $\pi / 4$, it follows that the functions are linearly independent.
(iii) is true: If $a_{0}+a_{1} x+a_{2} x^{2}$ is any polynomial in P_{2}, we can always write it as a linear combination of the three given polynomials. To achieve that we have to find constants c_{1}, c_{2}, and c_{3}, so that

$$
a_{0}+a_{1} x+a_{2} x^{2}=c_{1}(2+x)+c_{2} x+c_{3} x^{2}
$$

Equating the coefficients on both sides we get

$$
a_{0}=2 c_{1}, \quad a_{1}=c_{1}+c_{2}, \quad a_{2}=c_{3},
$$

and so we get the desired combination by setting $c_{1}=a_{0} / 2, c_{2}=$ $a_{1}-a_{0} / 2$, and $c_{3}=a_{2}$.
(iv) is true: Three vectors v_{1}, v_{2}, v_{3} in \mathbb{R}^{3} span all of \mathbb{R}^{3} if and only if the 3×3 matrix A with columns v_{1}, v_{2}, v_{3} has rank 3 . But three vectors in any coordinate space are linearly independent if and only if the matrix with columns those vectors has rank 3. Thus the vectors are linearly independent.

Solution of problem 1.8: Answer (B) is clearly false. The dimensions of the row space and the coulmn space of A are equal and also equal the rank pof A. Therefore answer (B) is equivalent to the statement that $\operatorname{rank}(A)+\operatorname{nullity}(A)=4$. But by the rank+nullity theorem we have that

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=\# \text { of columns of } A=5
$$

The correct answer is (B).

Solution of problem 1.9: To understand the column space of A we need
to put A into a reduced echelon form:

$$
\begin{aligned}
& R_{2} \mapsto R_{2}-3 R_{1} \\
& {\left[\begin{array}{ccccc}
1 & -3 & 0 & -1 & 2 \\
3 & -9 & -1 & -6 & 5 \\
2 & -6 & 0 & -2 & 4 \\
1 & -3 & 1 & 2 & 3
\end{array}\right] \quad \begin{array}{l}
R_{3} \mapsto R_{3}-2 R_{1} \\
R_{4} \mapsto R_{3}-R_{1} \\
\longrightarrow
\end{array} \quad\left[\begin{array}{ccccc}
1 & -3 & 0 & -1 & 2 \\
0 & 0 & -1 & -3 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 3 & 1
\end{array}\right]} \\
& R_{3} \leftrightarrow R_{4} \quad\left[\begin{array}{ccccc}
1 & -3 & 0 & -1 & 2 \\
0 & 0 & -1 & -3 & -1 \\
0 & 0 & 1 & 3 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \begin{array}{l}
R_{3} \rightarrow R_{3}-R_{2} \\
R_{2} \rightarrow-R_{2}
\end{array} \quad\left[\begin{array}{ccccc}
1 & -3 & 0 & -1 & 2 \\
0 & 0 & 1 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

A basis for the column space is given by the columns in A corresponding to the pivot columns of the reduced echelon form. Thus

$$
\begin{aligned}
\operatorname{columnspace}(A) & =\operatorname{span}\left(\left[\begin{array}{l}
1 \\
3 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right]\right) \\
& =\left\{\left[\begin{array}{c}
c_{1} \\
3 c_{1}-c_{2} \\
2 c_{1} \\
c_{1}+c_{2}
\end{array}\right] \left\lvert\, \begin{array}{l}
c_{1} \text { and } c_{2} \text { are } \\
\text { any real num- } \\
\text { bers }
\end{array}\right.\right\}
\end{aligned}
$$

Therefore the correct answer is (B).

Solution of problem 1.10: From the reduced row echelon form of A we have that

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]
$$

belongs to the null space of A if and only if

$$
\begin{aligned}
& x_{1}=3 x_{2}+x_{4}-2 x_{5}, \\
& x_{3}=-3 x_{4}-x_{5} .
\end{aligned}
$$

In particular if $x_{2}=0, x_{4}=0$, and $x_{5}=1$ we will have $x_{1}=-2$, $x_{3}=-1$. This gives $x_{1}+x_{3}=-3$. The correct answer is (D).

