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Abstract

We show that if M is an arithmetic hyperbolic 3-manifold, the set QL(M) of all rational
multiples of lengths of closed geodesics of M both determines and is determined by the commen-
surability class of M . This implies that the spectrum of the Laplace operator of M determines
the commensurability class of M . We also show that the zeta function of a number field with
exactly one complex place determines the isomorphism class of the number field.

1 Introduction

Let M be a closed, orientable Riemannian manifold of negative curvature. The rational length
spectrum QL(M) of M is the set of all rational multiples of lengths of closed geodesics of M . The
commensurability class of M is the set of all manifolds M ′ for which M and M ′ have a common
finite unramified cover. Our main result is:

Theorem 1.1 If M is an arithmetic hyperbolic 3-manifold, then the rational length spectrum and
the commensurability class of M determine one another.

This sharpens [10], where it was shown that the complex length spectrum of M determines its
commensurability class.

Suppose M ′ is an arithmetic hyperbolic 3-manifold which is not commensurable to M . Theorem
1.1 implies QL(M) 6= QL(M ′), though by Example 2.4 below it is possible that one of QL(M ′)
or QL(M) contains the other. By the length formulas recalled in §2.1 and §2.2, each element of
QL(M) ∪ QL(M ′) is a rational multiple of the logarithm of a real algebraic number. As noted by
Prasad and Rapinchuk in [9], the Gelfond Schneider Theorem [1] implies that a ratio of such loga-
rithms is transcendental if it is irrational. Thus if ` ∈ QL(M)−QL(M ′) then `/`′ is transcendental
for all non-zero `′ ∈ QL(M ′).

Recently Prasad and Rapinchuk have shown in [9] that if M is an arithmetic hyperbolic manifold
of even dimension, then QL(M) and the commensurability class of M determine one another.
In addition, they have shown that this is not always true for arithmetic hyperbolic 5-manifolds.
However, they have announced a proof that for all locally symmetric spaces associated to a specified
absolutely simple Lie group, there are only finitely many commensurability classes of arithmetic
lattices giving rise to a given rational length spectrum.

It is known (see [4] pp. 415–417) that for closed hyperbolic manifolds, the spectrum of the
Laplace-Beltrami operator action on L2(M), counting multiplicities, determines the set of lengths
of closed geodesics on M (without counting multiplicities). Hence Theorem 1.1 implies:

∗Partially supported by N. S. F.
†Partially supported by N. S. F.
‡Partially supported by N. S. F.
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Corollary 1.2 The spectrum of the Laplacian of an arithmetic hyperbolic 3-manifold M determines
the commensurability class of M .

This result was claimed but not proved in [10] where the corresponding result was proved for
arithmetic hyperbolic surfaces. There have been many constructions over the years of manifolds
with the same Laplace-Beltrami spectrum which are not isometric; see [7], [12], [13], [5], [11] and
[3]. Apart from [5] the methods of these papers all provide commensurable manifolds.

We now describe the organization of this paper. Some preliminary results concerning arithmetic
Kleinian groups are recalled in §2. Suppose that Γ ⊂ PSL2(C) is a torsion-free arithmetic Kleinian
group associated to an arithmetic hyperbolic three-manifold M . The invariant trace field of Γ is
the number field kΓ generated over Q by squares of traces of pre-images of elements of Γ in SL2(C).
It is clear that the commensurability class of M determines QL(M). The first step in proving the
converse is to show in Theorem 6.1(a) that kΓ is determined by QL(M). We then determine the
commensurability class of M from QL(M) following ideas similar to those in [10] (see Theorem
6.1(b)).

The main technical work in the proof of Theorem 1.1 is number theoretic. We give in §3 -
§5 a detailed analysis of the Galois theory of number fields k having one complex place and of the
quadratic extensions of k which embed in a fixed quaternion division algebra over k. One by-product
is the following result:

Theorem 1.3 Suppose that k and k′ are number fields having exactly one complex place and the
same Galois closure over Q. Then after replacing k′ by an isomorphic field, either k = k′, or k and
k′ are quadratic non-isomorphic extensions of a common totally real subfield k+. In the latter case,
the zeta functions ζk(s) and ζk′ (s) are not equal.

Since number fields with the same zeta function have the same Galois closure over Q, this implies:

Corollary 1.4 If k is a number field having one exactly one complex place, then k is determined
up to isomorphism by its zeta function.

This Corollary contrasts with the fact that that there are many examples of number fields which
are not determined up to isomorphism by their zeta functions (see [8] and [2]).

2 Preliminaries

In this section we recall some facts about arithmetic Kleinian groups Γ ⊂ PSL2(C); see [6] for
details.

2.1 Length spectra and eigenvalues

Let Γ be a torsion free discrete finite covolume Kleinian group, so that M = H3/Γ is a hyperbolic
3-manifold. For γ ∈ Γ, let λ be an eigenvalue of a pre-image of γ in SL2(C) for which |λ| > 1. Then
λ is well-defined up to multiplication by ±1, and we will refer to λ = λ(γ) as an eigenvalue of γ.
The axis of γ in H3 projects to a closed geodesic c(γ) in M which depends only on the conjugacy
class of γ in Γ. This defines a bijection between the conjugacy classes of hyperbolic elements of Γ
and the set of closed geodesics of H3/Γ. The length of c(γ) is l(γ) = 2 ln |λ| = ln |λλ| where λλ is
algebraic over Q.
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2.2 Arithmetic Kleinian groups

Let k be a number field with one complex place, and fix a non-real embedding ρk : k → C. Let B/k
be a quaternion algebra which is ramified at all real places of k, and let ρB : B → Mat2(C) be an
embedding extending the embedding ρk. Let Ok be the integers of k, and let O be an Ok-order of
B. Define O1 to be the multiplicative group of elements of O of reduced norm 1 to k. Then ρB(O1)
is a subgroup of SL(2, C) whose projection ρB(O1) to PSL(2, C) is discrete and of finite covolume.
A Kleinian group Γ is called arithmetic if it is commensurable with a group of the form ρB(O1) for
some k, B, ρB and O of the above kind. If Γ is a subgroup of some ρB(O1), then Γ is called derived
from a quaternion algebra. It can be shown (see [6, Theorem 8.3.1 and Cor. 8.3.6]) that a Kleinian
group Γ of finite covolume is arithmetic if and only if the group Γ(2) generated by the squares of
elements of Γ is derived from a quaternion algebra, and in this case

k = Q({tr(γ2) : γ ∈ Γ}) = Q({tr(η) : η ∈ ρB(O1)}). (2.1)

The orbifold M = H3/Γ is a manifold if and only if Γ has no elliptic elements, and this orbifold
is compact if and only if B is a division algebra. Our analysis of the commensurability class of M
hinges on the following fact (c.f. [6, Thm. 8.4.1]).

Theorem 2.1 The commensurability class of M determines, and is determined by, the isomorphism
class of B as a Q-algebra.

2.3 Invariant trace fields and quaternion division algebras

In this section we will suppose that k and B satisfy the conditions in §2.2 and that B is a division
algebra. We fix an embedding of B into Mat2(C), which fixes an embedding of k into C. The
following facts are proved in [6, Chapter 12].

Theorem 2.2 Suppose that Γ is derived from B and that γ is a hyperbolic element of Γ with
eigenvalue λ = λ(γ).

i. The field k(λ) generated by λ over k is a quadratic extension field of k which embeds into B.
If λ is real, then λ has degree 2 over the field k ∩ R.

ii. Let L be a quadratic extension of k. Then L embeds in B/k if and only if L = k(λ(γ ′)) for
some hyperbolic γ ′ ∈ Γ. This will be true if and only if no place of k which splits in L is
ramified in B.

iii. Let B1 and B2 be quaternion algebras over number fields k1 and k2. A field isomorphism
τ : k1 → k2 extends to an isomorphism B1 → B2 of Q-algebras if and only if τ(R1) = R2

when Ri is the set of places of Bi which ramify over ki.

iv. Let η : k(λ) → C be an embedding. Then η(k) ⊂ R if and only if |η(λ)| = 1, and {λ, 1/λ, λ, 1/λ}
is the set of conjugates of λ off the unit circle.

Lemma 2.3 Let Γ be as in Theorem 2.2. If λ is not real then k = Q(λ + 1/λ) and [Q(λ) : k] = 2.
If λ is real then k+ = Q(λ + 1/λ) is the maximal totally real subfield of k, [k : k+] = 2 and Q(λ) is
a degree 2 extension of k+.

Proof. Since Γ is derived from a quaternion algebra, tr(γ) = λ + 1/λ ∈ k by (2.1). Suppose
that Q(λ + 1/λ) is a proper subfield of k. Since k has one complex place, all proper subfields of k
must be totally real, so λ + 1/λ is totally real. Because γ is hyperbolic, |λ| 6= 1, so λ + 1/λ ∈ R

implies λ ∈ R. Hence if λ is not real then k = Q(λ + 1/λ), and then [Q(λ) : k] = 2 by Theorem
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2.2(i). For the rest of the proof we suppose that λ ∈ R. Then F = Q(λ + 1/λ) is a proper
subfield of k, so λ + 1/λ is totally real. Suppose that [k : F ] 6= 2. Since k has just two non-real
embeddings, the embedding F ⊂ R determined by the non-real embedding k ⊂ C we have fixed
can be extended to an embedding η : k(λ) ↪→ C such that η(k) ⊂ R. Theorem 2.2(iv) now implies
implies 2 < |λ + 1/λ| = |η(λ + 1/λ)| = |η(λ) + η(λ)−1| ≤ 2 so the contradiction shows [k : F ] = 2.
The last sentence of the lemma now follows from this, Theorem 2.2(i) and the fact that k is not
totally real. tu

We finish this section by showing how Theorem 1.1 can be used to provide proper inclusion of
rational length sets.

Example 2.4 Let B and k be as in §2.2, and let B′ be a quaternion algebra over k which is not
isomorphic to B but which ramifies over every place of k where B ramifies. Let M1 (resp. M2) be
the manifold defined by a Kleinian group Γ1 (resp. Γ2) without elliptic elements which is derived
from B (resp. B′). Then by Theorem 2.1, M1 and M2 are not commensurable. By Theorem 2.2,
if γ is a hyperbolic element of Γ2 then L = k(λ(γ)) embeds into B over k, where λ(γ) is a unit
of OL having norm 1 to k. Since OL embeds into some maximal order O of B, we conclude that
there is a hyperbolic element γ ′ ∈ ρB(O1) such that λ(γ) = λ(γ ′). A positive integral power of γ ′

lies in a conjugate of Γ1, so we conclude from the length formulas of §2.1 that QL(M2) ⊂ QL(M1).
Note that Theorem 1.1 will imply that because M1 and M2 are not commensurable, QL(M1) must
properly contain QL(M2).

3 Number theoretic results

Let k be a number field, which at the outset we do not assume has one complex place. We will

regard k as a subfield of C via a fixed non-real embedding ρk : k → C. Let kcl be the Galois

closure of k over Q in C. Define G = Gal(kcl/Q). Let n = [k : Q], and let Σ = {σ1, . . . , σn} be the

embeddings of k into C. Then σi(k) ⊂ kcl for all i. We fix a left action of G on Σ by letting σ ∈ G
send σi ∈ Σ to σ ◦ σi. This fixes an embedding of G into the symmetric group Sn = Perm(Σ). Let

c ∈ G be the restriction of complex conjugation on C to kcl. Let C be the conjugacy class of c in G.

3.1 Counting archimedean places

Theorem 3.1 Suppose that H is a subgroup of G. Let k′ = (kcl)H , and define n′ = [k′ : Q] = [G :
H ]. The numbers r1(k

′) and r2(k
′) of real and complex places of k′ are given by

r1(k
′) =

#(C ∩H)

#C · n′ and r2(k
′) = n′

(

1− #(C ∩H)

#C

)

/2. (3.2)

Proof. There is a bijection between the set G/H of left cosets gH of H in G and the emdeddings
of γ : k′ → C of k′ into C which sends gH to the restriction of g to k′. An embedding γ is real if
and only if it is fixed by complex conjugation. This is equivalent to cgH = gH , which is the same
as g−1cg ∈ H . Let ZG(c) be the centralizer of c in G. The map G → C which sends g ∈ G to g−1cg
is surjective and defines a bijection between the right cosets ZG(c)\G and C. This gives

#H · r1(k
′) = #{g ∈ G : g−1cg ∈ H} = #(C ∩H) ·#ZG(c) =

#(C ∩H) ·#G

#C .

The equalities (3.2) now follow from this and [G : H ] = n′ = r1(k
′) + 2r2(k

′). tu
Corollary 3.2 One has r2(k

′) = 1 if and only if

#C −#(C ∩H) =
2#C
n′

. (3.3)
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3.2 Fields with one complex place and the same Galois closure

In this section we will make the following hypothesis.

Hypothesis 3.1 The fields k and k′ = (kcl)H have exactly one complex place, and the same Galois

closure kcl over Q. After replacing k by k′, if necessary, we can suppose n′ = [k′ : Q] = [G : H ] ≥
n = [k : Q].

We may order the set Σ = {σ1, . . . , σn} of complex embeddings of k in such a way that σ1 is
not real, σ2 = σ1 = c ◦ σ1 is the complex conjugate of σ1, and σ3, . . . , σn are real. Let G(1) be the

stabilizer of σ1 under the action of G = Gal(kcl/Q) on Σ. We may identify k with (kcl)G(1) ⊂ C

via σ1 : k → C.

Definition 3.3 Identifying the element σi of Σ with the integer i fixes an identification of Sn =
Perm(Σ) with the permutations of {1, . . . , n}. This identifies the complex conjugation c ∈ G with the
transposition (1, 2). The conjugacy class C is thus a set of transpositions in Sn. For all subgroups
Γ of G, define the conjugation graph C(Γ) of Γ to be the union over all transpositions (i, j) ∈ C ∩ Γ
of the undirected graph which has vertices i and j and an edge between these vertices.

Proposition 3.4 For all subgroups Γ of G, the conjugation graph C(Γ) is a finite (possibly empty)
disjoint union of complete graphs. If Γ acts transitively on {1, . . . , n} there are two possibilities:

i. C(Γ) is empty, or

ii. There is a divisor `(Γ) > 1 of n such that C(Γ) is the disjoint union of n/`(Γ) complete graphs,
each of which have `(Γ) vertices.

Proof. For the first statement, it is enough to show that if T is a (non-empty) connected
component of C(Γ), then T must be a complete graph. Let {t1, . . . , tm} be the vertices in T . Then
m ≥ 2 by the construction of C(Γ). Since T is connected, we can order the ti so that for all i ≥ 2,
there is an integer j(i) such that 1 ≤ j(i) < i and (ti, tj(i)) is a transposition in C ∩ Γ. Then the
transpositions {(ti, tj(i))}m

i=1 generate Perm(t1, . . . , tm), so T is a complete graph. The fact that (i)
or (ii) of the Proposition hold if Γ acts transitively on {1, . . . , n} is clear from the fact that Γ then
acts transitively on the connected components of C(Γ). tu

Corollary 3.5 Since Γ = G acts transitively on {1, . . . , n}, and C(G) contains c = (1, 2), we can
define ` ≥ 2 to be the divisor `(G) of n. The number of elements of C is (n/`)`(`− 1)/2 = n(`−1)/2.
The normal subgroup N generated by the set C of all complex conjugations in G is isomorphic to
the direct product over the connected components of C(G) of the symmetric groups on the vertices
in each component. Thus N ∼= (S`)

n/`.

Proposition 3.6 Let H be a subgroup of G as in Hypothesis 3.1, and let ` = `(G) be as in Corollary
3.5. Then n = n′ and there are the following possibilities for the conjugation graph C(H):

i. If ` > 2, then C(H) is the disjoint union of (n/`) − 1 complete graphs on ` vertices together
with a complete graph on ` − 1 vertices. There is a unique integer j in the range 1 ≤ j ≤ n
such that j is not a vertex of C(H), and the edges of C(H) are exactly the edges of C(G) which
do not have j as a vertex.

ii. If ` = 2, then C(H) is the union of (n/`) − 1 complete graphs on ` = 2 vertices. There are
exactly two distinct integers j in the range 1 ≤ j ≤ n which are not vertices of C(H).
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Proof. Since n′ ≥ n in Hypothesis 3.1, corollaries 3.2 and 3.5 show

#C −#(C ∩H) =
2#C
n′

= (`− 1)
n

n′
≤ (`− 1). (3.4)

Because ` ≥ 2, we conclude that #C − #(C ∩ H) > 0. Hence by Proposition 3.4, C(H) 6= C(G)
is a union of complete subgraphs of C(G) which contains no isolated points. By (3.4) there are at
most ` − 1 edges of C(G) not in C(H), where C(G) is a disjoint union of n/` complete graphs on `
vertices. If some component T of C(G) contains two components T1 and T2 of C(H), we can order
the Ti so that #V1 ≤ `/2 and #(V − V1) ≥ #V2 ≥ 2 when V (resp. Vi) is the set of vertices of T
(resp. Ti) . This leads to at least 2 · `/2 = ` edges of C(G) not in C(H), contradicting (3.4). Hence
the intersection of C(H) with each connected component of C(G) is a complete graph, so there must
be a vertex j of C(G) which is not a vertex of C(H). There are `− 1 edges of C(G) having this j as
a vertex, and none of these are in C(H). Hence by (3.4), these are exactly the edges of C(G) not in
C(H), and this leads to (i) and (ii). tu

Corollary 3.7 Suppose that ` > 2 in Proposition 3.6, and let j be the integer specified in part (i)
of this Proposition. Then H equals the subgroup G(j) of G which stabilizes j, and k ′ is a conjugate
field to k. In particular, k and k′ are isomorphic as fields. Finally, if k+ is the maximal totally real
subfield of k, then [k : k+] > 2.

Proof. The action of H on C(G) sends C(H) to itself, so this action must fix the unique vertex
j not in C(H). Hence H ⊂ G(j), so H = G(j) because n′ = [G : H ] = n = [G : G(j)]. Since G acts
transitively on {1, . . . , n}, G(j) = H is conjugate to G(1), so k and k′ are isomorphic. If [k : k+] = 2,
then N ∩ G(1) must have index two in N when N is the normal subgroup of G generated by all
complex conjugations in G. We see from Corollary 3.5 that N contains the symmetric group on the
set of ` vertices which form the connected component of C(G) which contains the vertex 1 fixed by
G(1). Thus [N : N ∩G(1)] ≥ [S` : S`−1] = ` > 2 so [k : k+] > 2. tu

For the rest of this section we suppose ` = 2 in Proposition 3.6. We label the real embeddings
{σ3, . . . , σn} of k into R in such a way that the conjugacy class C of complex conjugations in G
is the set of n/2 commuting transpositions {(1, 2), (3, 4), (5, 6), . . . , (n − 1, n)}. The group N =
∏

c′∈C Z/2 ∼= (Z/2)n/2 generated by the elements of C is normal in G, and G = G/N acts on N via

the permutation action of G on C. Let π : G → G = G/N be the natural quotient homomorphism.

Proposition 3.8 When ` = 2, there is a unique homomorphism s : G → G which is a section to
π such that s(g) permutes the set {1, 3, . . . , n− 1} of odd integers in {1, . . . , n}. This makes G the
semi-direct product of N and G. The conjugation action of G on C is faithful and transitive.

Proof. Since G permutes the elements of C = {(1, 2), . . . , (n − 1, n)}, there is for each g ∈ G
a unique n ∈ N such that ng permutes the elements of {1, 3, . . . , n − 1}. The set map s : G → G
defined by s(Ng) = ng is the unique section of π for which s(Ng) permutes {1, 3, . . . , n − 1} for
all g. The uniqueness of s implies s is a homomorphism. The action of s(G) on {1, 3, . . . , n− 1} is
faithful, and the action of G on {1, 2, . . . , n} is transitive, so it follows that the action of G on C is
faithful and transitive. tu

Proposition 3.9 Suppose that ` = 2, and that H is not conjugate to G(1) in G. After replacing H

by a conjugate by an element of G, which does not change the isomorphism class of k ′ = (kcl)H , we
can assume that the two vertices which do not appear in C(H) are 1 and 2. Let G(1) be the subgroup
of G which fixes the transposition c = (1, 2) in C, and let G̃(1) = π−1(G(1)).

a. The group G̃(1) is the direct sum of G(1) and the cyclic group 〈c〉 of order 2.
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b. One has s(G(1)) ⊂ G(1), and the group G(1) is the semi-direct product N0.s(G(1)).

c. Let ξ : G̃(1) → G̃(1)/G(1) = Z/2 be the surjection resulting from (a). There is a unique
character χ : G̃(1) → Z/2 of order two inflated from a character of G(1) for which H the
kernel of the character ξ + χ : G̃(1) → Z/2 defined by (ξ + χ)(g) = ξ(g) + χ(g).

d. Conversely, if χ is the inflation to G̃(1) of any order two character of G(1), and we define H

to be the kernel of the sum character ξ + χ : G̃(1) → Z/2, then k′ = (kcl)H has exactly one

complex place and Galois closure kcl over Q, and k′ is not isomorphic to k.

Proof. Any element g ∈ G̃(1) fixes c = (1, 2), so g permutes {1, 2} and commutes with c. This
leads to part (a). Since s(G(1)) sends odd integers to odd integers and permutes {1, 2} it must lie
in G(1). We have H ∩N = N0 = G(1) ∩N from Proposition 3.6(ii). The sequence

1−→G(1) ∩N−→G(1)
π−→G(1)−→1

is exact since s(G(1)) ⊂ G(1), and this leads to part (b). Since the action of H on C must fix the
unique element c = (1, 2) of C which is not in H , we have π(H) ⊂ G(1), so H ⊂ π−1(G(1)) = G̃(1).
Since [G : H ] = [G : G(1)] and [G̃(1) : G(1)] = 2, H must be an index two subgroup of

G̃(1) = 〈c〉 ×G(1) = 〈c〉 × (N0.s(G(1))).

Since H ∩N = G(1)∩N = N0 has index 2 in N , and c 6∈ H , this leads to part (c). Finally, suppose
we construct H and k′ as in part (d). Then n′ = [G : H ] = [k′ : Q] equals n = [G : G(1)] = [k : Q].

We have C ∩H = {(3, 4), . . . , (n−1, n)} by the definition of H as the kernel of ξ +χ. So k′ = (kcl)H

has exactly one complex place by Theorem 3.1. If k′ were isomorphic to k, so that H is conjugate
to G(1), then H = G(j) with j ∈ {1, 2} in view of C ∩H . Let σ be an element of s(G(1)) ⊂ G(1)
such that χ(σ) 6= 0 in Z/2. Then ξ(σ) = 0 6= ξ(c) and σ fixes both 1 and 2 since it acts both on
{1, 3, . . . , n− 1} and {1, 2}. Hence ξ + χ is non-trivial on σ ∈ G(1) and trivial on cσ 6∈ G(2). This

shows H = Ker(ξ + χ) is not G(1) or G(2) so k′ and k are not isomorphic. To show (k′)cl = kcl

it will suffice to show that H contains no non-trivial normal subgroup J of G. The group π(H) =
π(G(1)) = G(1) contains no non-trivial normal subgroup of π(G) = G since by Proposition 3.8, G
is a transitive subgroup of Perm(C), and G(1) is the subgroup of G which stabilizes c ∈ Perm(C).
It follows that π(J) must be trivial, so J ⊂ N = Ker(π). However, H ∩N = G(1) ∩N = N0, so J
would be a non-trivial normal subgroup of G contained in G(1). There is no such subgroup because
G acts faithfully and transitively on {1, . . . , n}. tu

Corollary 3.10 In all cases of Proposition 3.8, the fields k = (kcl)G(1) and k′ = (kcl)H are

quadratic extensions of the totally real field k+ = (kcl)G̃(1). The Galois closure of k+ over Q is

(kcl)N . The field k+ (and hence (k+)cl) is determined up to isomorphism by (k+)cl.

Proof. The field k+ is totally real because G̃(1) contains C. We have [k : k+] = [G̃(1) :
G(1)] = 2 = [G̃(1) : H ] = [k′ : k+]. The group G̃(1) contains the normal subgroup N of G, while
G̃(1)/N = G(1) contains no normal subgroup of G = G/N by the argument at the end of the proof
of Proposition 3.8. This means that N is the maximal normal subgroup of G contained in G̃(1),

so k+ has Galois closure (kcl)N over Q. We have Gal((k+)cl/Q) = G/N = G, and both G(1) and

H have the same image G(1) in G. Thus k+ = ((k+)cl)G(1) is determined up to isomorphism by

(k+)cl. tu
In view of Corollaries 3.7 and 3.10, the following result completes the proof of Theorem 1.3.
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Proposition 3.11 Suppose that H 6= G(1) in Proposition 3.8. Then the zeta functions of k =

(kcl)G(1) and k′ = (kcl)H are not equal.

Proof. By Proposition 3.9(b,c) there is a γ ∈ s(G(1)) ⊂ G(1) which is not in H . It will be
enough to show that if B(γ) is the conjugacy class of γ in G, then

#(B(γ) ∩H) < #(B(γ) ∩G(1)). (3.5)

Define B(π(γ)) to be the conjugacy class of π(γ) in G = G/N . Then π gives a surjection
πB : B(γ) → B(π(γ)). We claim that

πB(B(γ) ∩H) ⊂ B(π(γ)) ∩G(1) = πB(B(γ) ∩G(1)). (3.6)

The first containment follows from H ⊂ G̃(1) and G̃(1) = π−1(G(1)), and the non-trivial part of
the second equality is the assertion that B(π(γ))∩G(1) ⊂ π(B(γ)∩G(1)). Suppose that ι ∈ G and
that ιπ(γ)ι−1 ∈ B(π(γ)) ∩ G(1). Applying the section homomorphism s : G → G and using the
fact that γ = s(π(γ)) because γ ∈ s(G(1)), we find ιγι−1 ∈ s(G(1)) ⊂ G(1) when ι = s(ι). Thus
ιγι−1 ∈ B(γ) ∩G(1) satisfies πB(ιγι−1) = ιπ(γ)ι−1, so (3.6) holds.

We now claim that
π−1

B (πB(B(γ) ∩G(1))) = B(γ) ∩G(1) (3.7)

where as before πB : B(γ) → B(π(γ)) is the map induced by π : G → G. One containment is
obvious. Suppose now that zγz−1 is an element of π−1

B (πB(B(γ) ∩G(1))) for some z ∈ G. Since G
is the semi-direct product N.s(G), we can write z = n·s(g) for some g ∈ G. Then s(g)γs(g)−1 ∈ s(G)
and

π(s(g)γs(g)−1) ∈ πB(B(γ) ∩G(1)) ⊂ π(G(1)) = G(1).

Hence γ′ = s(g)γs(g)−1 ∈ s(G(1)) ⊂ G(1) relative to the semi-direct product description G =
N.s(G). Now

zγz−1 = nγ′n−1 = (nγ′n−1γ′−1)γ′ = n(n−1)γ′

γ′ (3.8)

where (n−1)γ′

is the image of n−1 ∈ N under the conjugation action of γ ′ ∈ G(1). Recall that

N =
∏

c′∈C

(Z/2) (3.9)

and that the action of G on N factors through G = G/N and is via the permutation action of G on
C. The elements of G(1) fix the element c of C. So we conclude that for all n ∈ N , the c component
of n(n−1)γ′

relative to the description of N in (3.9) is 0. Thus n(n−1)γ′

lies in the subgroup
N0 ⊂ H ∩ G(1). Since γ′ ∈ s(G(1)) ⊂ G(1), we find from (3.8) that zγz−1 = nγ′n−1 ∈ G(1), and
clearly zγz−1 ∈ B(γ). This completes the proof of (3.7).

In view of (3.6) and (3.7), we have

B(γ) ∩H ⊂
∐

τ∈πB(B(γ)∩G(1))

π−1
B (τ) = B(γ) ∩G(1). (3.10)

where the coproduct just means the disjoint union of sets. Now note that when

τ = πB(γ) ∈ πB(B(γ) ∩G(1))

we have γ ∈ π−1
B (τ), but γ 6∈ H by our choice of γ. Thus #(B(γ) ∩ H) < #(B(γ) ∩ G(1)) which

completes the proof of Proposition 3.11. tu
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Remark 3.12 The smallest possible degree over Q of non-isomorphic fields k and k ′ as in Theorem
1.3 is 6, and it is not hard to check that all minimal degree examples can be constructed in the

following way. Let k+ be a totally real non-Galois cubic extension of Q. The Galois closure (k+)cl

is then a totally real S3 extension of Q, so it contains a unique real quadratic field Q(
√

d), where
d > 0 is a square free integer. Suppose that α ∈ k+ is positive at two of the real places of k+

and negative at the other real place. Then k and k′ can be taken to be isomorphic to k+(
√

α) and
k+(

√
d · α), respectively. A numerical example is given by letting α be the unique negative real root

of f(x) = x3 − 4x + 1, k+ = Q(α), k = k+(
√

α) = Q(
√

α) and k′ = k+(
√

37 · α) = Q(
√

37 · α).

4 Galois closures of fields generated by eigenvalues and log-
arithms of lengths.

Throughout this section we assume that Γ is an arithmetic Kleinian group derived from a quaternion
algebra B/k. We view k as a subfield of C via a fixed a non-real embedding ρk : k → C. Let γ ∈ Γ
be a hyperbolic element with eigenvalue λ = λ(γ), so |λ| > 1. We assume the notations of §3
concerning k. Let k+ be the maximal totally real subfield of k.

Proposition 4.1 If λ is real, then Q(λ) = Q(λλ) = Q(λ2), so Q(λ)cl = Q(λλ)cl.

Proof. Since γ2 has eigenvalue λ2, we conclude from Lemma 2.3 that k+ ⊂ Q(λ2) ⊂ Q(λ) and
that each of Q(λ2) and Q(λ) have degree 2 over k+. Hence Q(λ2) = Q(λ). tu

Lemma 4.2 Suppose that λ is not real. Then [Q(λ, λ) : Q(λλ)] = 2 and every σ ∈ Gal(Q(λ)cl/Q(λλ))
either fixes or interchanges λ and λ.

Proof. Since λ is not real, complex conjugation takes λ to λ 6= λ and fixes Q(λλ). The Lemma
now follows from the fact shown in Theorem 2.2(iv) that λ and λ have larger complex absolute value
than any of the other conjugates of λ. tu

Lemma 4.3 Suppose that ` = 2 in Corollary 3.5 and that λ is not real. Then k = Q(λ + λ−1) is a
degree two extension of the totally real field k+. There are two possibilities:

a. The field Q(λ) = Q(λ) is quadratic over k and Galois of degree four over k+.

b. The extensions Q(λ) and Q(λ) are distinct quadratic extensions of k. The extension Q(λ, λ) is
a dihedral extension of degree 8 of k+. The field Q(λλ) is a non-Galois degree four extension
of k+ inside Q(λ, λ), and Q(λλ) ∩ k = k+.

Proof. We know from Lemma 2.3 that k = Q(λ + λ−1), so λ + λ−1 is not real. By Corollary
3.10, k is stable under complex conjugation, and k+ = k ∩ R is the maximal totally real subfield of
k, with [k : k+] = 2. By Theorem 2.2(i), [Q(λ) : k] = [Q(λ) : Q(λ + λ−1)] = 2.

If Q(λ) = Q(λ), complex conjugation defines an automorphism of Q(λ) over k+ which gives a
non-trivial automorphism of k. Then [Q(λ) : k] = [k : k+] = 2 implies Q(λ)/k+ is Galois of degree
4.

Now suppose Q(λ) 6= Q(λ). Then Q(λ)/k+ is a quartic extension containing the quadratic
extension k/k+. Complex conjugation sends k to k, fixes k+ and carries Q(λ) to Q(λ). This implies
Q(λ, λ) is a dihedral extension of k+ of degree 8. By Lemma 4.2, [Q(λ, λ) : Q(λλ)] = 2. The rest of
part (b) follows from this and the fact that Q(λλ) = Q(λ)∩R ⊃ k+ is fixed by complex conjugation
while k is not. tu
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Proposition 4.4 Suppose that λ is not real, and that either ` > 2 or that ` = 2 and that option (b)

of Lemma 4.3 holds. Then the Galois closure Q(λ)cl of Q(λ) over Q equals Q(λλ)cl.

Proof. If ` = 2, Lemma 4.3(b) implies Q(λλ) is a non-Galois quartic extension of k+ inside the
dihedral degree 8 extension Q(λ, λ) of k+. Hence the Galois closure of Q(λλ) over k+ is Q(λ, λ),

and this implies that Q(λλ)cl = Q(λ)cl.
The remaining case to consider is when λ is complex and ` > 2. Then Q(λ) is a quadratic

extension of k = Q(λ + λ−1) by Lemma 2.3. The inclusion kcl ⊂ Q(λ)cl gives a surjection q : G =

Gal(Q(λ)cl/Q) → Gal(kcl/Q) = G. Define H = Gal(Q(λ)cl/Q(λλ)) ⊂ G. It will suffice to show
that the intersection J of all the conjugates of H in G equals the trivial subgroup {e}.

We know by Lemma 4.2 that every γ̃ ∈ H either fixes each of λ and λ or interchanges them. If all

γ̃ ∈ J fix λ, then since J is normal in G we will see that J fixes all of Q(λ)cl, so J = {e} and we are
done. We may thus suppose that there is an element γ̃ ∈ J for which γ̃(λ) = λ and γ̃(λ) = λ. Then

γ̃(λ + λ−1) = λ + λ
−1

. Since k = Q(λ + λ−1), we conclude that γ = q(γ̃) ∈ G satisfies γσ1 = σ2,
where σ1 and σ2 are as before the non-real complex conjugate embeddings of k into C. Since ` > 2,
the description of the conjugation graph C(G) in Proposition 3.4 and Corollary 3.5 shows that there
is a j 6∈ {1, 2} such that τσ1 = σ1 and τσ2 = σj for some τ ∈ G. Then τγτ−1σ1 = σj .

Let τ̃ ∈ G = Gal(Q(λ)cl/Q) be any element for which q(τ̃ ) = τ . By the definition of J
as the intersection of all the conjugates of H in G, we know that γ̃ ∈ H and τ̃ γ̃τ̃−1 ∈ H. We
have (τ̃ γ̃τ̃−1)(λ + 1/λ) = σj(λ + 1/λ). On the other hand, τ̃ γ̃τ̃−1 ∈ H and Lemma 4.2 show
(τ̃ γ̃τ̃−1)(λ + 1/λ) ∈ {λ + 1/λ, λ + 1/λ}. This would give σj(λ + 1/λ) = σi(λ + 1/λ) for some
i ∈ {1, 2}, which is impossible since k = Q(λ + 1/λ) and j 6∈ {1, 2}. The contradiction completes
the proof of Proposition 4.4. tu

5 Cebotarev Results

We will assume the notations of the previous two sections. Let b : Γ → Z+ be a function on
hyperbolic elements of Γ and let lb(γ) = (λ(γ)λ(γ))b(γ) for γ ∈ Γ.

5.1 The intersection of Galois closures

Lemma 5.1 The intersection ∩γ∈ΓQ(lb(γ))cl is equal to kcl unless k is a quadratic extension of a

totally real field k+, and in the latter case this intersection equals (k+)cl. These two alternatives
correspond to ` > 2 and ` = 2 in the notation of Corollary 3.5.

Proof. Suppose first that ` > 2. Then the maximal totally real subfield k+ of k has [k : k+] > 2
by Corollary 3.7. On applying Lemma 2.3 to γb(γ) we see that λ(γ)b(γ) is not real. Lemma 2.3 and
Proposition 4.4 now show

Q(λ(γ)b(γ)) = k(λ(γ)) and Q(lb(γ))cl = Q(λ(γ)b(λ))cl ⊃ kcl. (5.11)

Theorem 2.2(i) also shows that Q(λ(γ)b(λ)) is a quadratic extension of k, so Q(λ(γ)b(λ))cl is an

elementary abelian two-extension of kcl. Hence to show that ∩γ∈ΓQ(lb(γ))cl is equal to kcl, it will

be enough to show that for each quadratic extension L of kcl there is a hyperbolic element γ ∈ Γ

such that Q(λ(γ)b(λ))cl ∩ L = kcl.
By the Cebotarev density Theorem, we can find a rational prime p which splits completely in

kcl, does not lie under a prime of k which ramifies in B, and for which some prime P over p in kcl

is inert to L. By the approximation theorem for absolute values of k, we can construct a quadratic
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extension F of k which is ramified at each place of k which ramifies in B, and such that each prime
over p in k splits in F . By Theorem 2.2(ii) there is a hyperbolic element γ ∈ Γ such that k(λ(γ))
is isomorphic to F . Then Q(λ(γ)b) = k(λ(γ)b) = k(λ(γ)) = F for all positive integers b by (5.11).

Since p splits completely in F by construction, we conclude that p splits in Q(λ(γ)b(λ))cl = (F )cl.

Since p does not split in the quadratic extension L of kcl, this forces Q(λ(γ)b(λ))cl ∩ L = kcl as
required.

Suppose now that ` = 2. Then [k : k+] = 2 by Corollary 3.10, and Q(lb(γ)) ⊃ k+ by Lemma
4.3, so

(k+)cl ⊂ ∩γ∈ΓQ(lb(γ))cl. (5.12)

Since kcl/(k+)cl is a two-extension, the right side of (5.12) is also a two-extension of (k+)cl. Hence

it will suffice to show for each quadratic extension L of (k+)cl it is possible to find a hyperbolic

γ ∈ Γ such that such that Q(lb(γ))cl ∩ L = (k+)cl. This can be done by a Cebotarev argument
similar to the one for ` > 2. tu

5.2 The case ` = 2.

Throughout this section we will assume all the notation of the previous section and that ` = 2.
Thus k is a quadratic extension of a totally real field k+.

Lemma 5.2 There are infinitely many γ ∈ Γ for which λ = λ(γ)b(γ) has the following properties.

a. λ satisfies the conditions in option (b) of Lemma 4.3.

b. All embeddings of the field k+ into Q(λλ) over Q have the same image.

Proof. By the Cebotarev density theorem, we can find infinitely many primes p of Q which
split completely in k and do not lie under any place of k ramified in B. Fix such a prime, and let q1

and q2 be primes of Ok over a prime q+ of k+ which lies over p. We can find a quadratic extension
F/k which is ramified over each place of k which ramifies in B and such that q1 is ramified in F ,
and q2 splits in F . We then have q1OF = Q2

1 and q2OF = Q2Q′
2 where Qj is a prime ideal of F .

By Theorem 2.2, there is an element γ ∈ Γ such that F = k(λ′) where λ′ = λ(γ). By Theorem
2.2(i) we have F = k(λ′b) for all integers b ≥ 1. Thus F = k(λ) when λ = (λ′)b(γ) = λ(γ)b(γ). The
extension F/k+ cannot be Galois, since Q1 and Q2 are primes of F over the same prime q+ of k+

which have different ramification degrees. If λ were real, then by Lemma 2.3, the extension Q(λ)
would be quadratic over k+, so k(λ) would be Galois over k+, which is not the case. Thus λ is not
real, so either option (a) or option (b) of Lemma 4.3 holds. However, option (a) is impossible, since
then k(λ) would again again be Galois over k+. So option (b) holds.

Note that by Lemma 4.3 there is an embedding s1 : k+ → Q(λλ). Suppose that there is another
embedding s2 : k+ → Q(λλ) such that s1(k

+) 6= s2(k
+). Regarding k+ as a subfield of Q(λλ)

via s1, the composite field L = k+s2(k
+) is now a totally real non-trivial extension of k+ inside

Q(λλ). By option (b) of Lemma 4.3, L must be the fixed field Q(λ, λ)J̃ of the order 4 subgroup J̃
generated by the conjugates of J = Gal(Q(λ, λ)/Q(λλ)) in Gal(Q(λ, λ)/k+). Let A be a prime of
Q(λ, λ) lying over the prime Q2 of F . Recall that Q2 is unramified over k+, since the prime q2 of
k under Q2 is split from k to F , and q2 is unramified over the prime q+ of k+ which is unramified
over Q. However, since Q(λ, λ) is a Galois extension of k+, A must be conjugate to a prime of
Q(λ, λ) lying over the prime Q1, which is quadratically ramified over k. So it follows that A must
be quadratically ramified over F , i.e. A2 = Q2OQ(λ,λ). By considering the ramification indices of

primes lying below A in the tower of extensions k+ ⊂ F ⊂ Q(λ, λ) it follows that the inertia group
I(A) of A in H = Gal(Q(λ, λ)/k+) equals Gal(Q(λ, λ)/F ) = Gal(Q(λ, λ)/Q(λ)). No conjugate of
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I(A) lies in the group J̃ , since J̃ is generated by the conjugates of J and J is a non-central group of
order 2 in H which intersects Gal(Q(λ, λ)/k) trivially. (Note that Gal(Q(λ, λ)/k) is the Klein four
subgroup generated by the conjugates of I(A) = Gal(Q(λ, λ)/Q(λ)).) Thus q+ must ramify in the

extension L = k+s2(k
+) = Q(λ, λ)J̃ since no prime over q+ in L can ramify in Q(λ, λ). However,

we chose q+ to be a prime over the rational prime p which splits completely in k+. Thus p splits
completely in s2(k

+) and thus also in L, which is impossible if q+ ramifies from k+ to L. The
contradiction shows that there could not have been a second embedding s2 : k+ → Q(λλ) such that
s2(k

+) 6= k+. tu

6 Proof of Theorem 1.1

Clearly the commensurability class of M determines the rational length spectrum QL(M). Hence
Theorem 1.1 will follow immediately from the next result and Theorem 2.1.

Theorem 6.1 Suppose that M1 = H3/Γ1 and M2 = H3/Γ2 are arithmetic hyperbolic 3-manifolds
with the same rational length spectrum. Let ki (resp. Bi) be the invariant trace field (resp. the
invariant quaternion algebra) of Mi.

a. There is an field isomorphism φ : k1 → k2.

b. The isomorphism φ in (a) can be extended to an isomorphism B1 → B2.

To begin the proof of Theorem 6.1, note that by (2.1), we can replace Γi by Γ
(2)
i so as to be able

to assume that Γi is derived from Bi. Since M1 and M2 have the same rational length spectrum
there are functions bi : Γi −{e} → Z+ for i = 1, 2 with the following property. Suppose i = 1, 2 and
that j = 3− i is the other element of {1, 2}. Then for each γ ∈ Γi −{e}, the product bi(γ) · l(γ) lies
in the set L(Mj) of lengths of closed geodesics of Mj , where l(γ) is the length of the closed geodesic
on Mi associated to γ.

Define

`bi
(γ) =

(

λ(γ)λ(γ)
)bi(γ)

= ebi(γ)l(γ)

where λ(γ) is the eigenvalue of γ. Let S(Γi, bi) = {`bi
(γ) : γ ∈ Γi − {e}}. Since bi(γ)l(γ) = l(γ′) ∈

L(Mj) for some γ′ ∈ Γj − {e}, we conclude that

S(Γi, bi) ⊂ S(Γj , 1j) (6.13)

when 1j : Γj − {e} → Z+ is the function which takes the value 1 on all elements of Γj − {e}.

6.1 Proof of Theorem 6.1(a)

By Lemma 5.1,
∩{Q(τ)cl : τ ∈ S(Γi, bi)} = (k′i)

cl (6.14)

where k′i = ki except when ki is a quadratic extension of its maximal totally real subfield k+
i , in

which case k′i = k+
i . This result is independent of bi. So by (6.13),

(k′1)
cl = (k′2)

cl (6.15)

It was shown in Corollaries 3.7 and 3.10 that the isomorphism class of k′i can be determined
from that of (k′i)

cl. So (6.15) implies Theorem 6.1(a) if ki = k′i for i = 1, 2. We thus reduce to the
case in which [ki : k+

i ] = 2 for at least one of i = 1, 2. Then (6.15) gives [ki : k+
i ] = 2 and ` = 2 for

i ∈ {1, 2}.
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By Lemma 5.1,
∩{Q(τ) : τ ∈ S(Γi, bi)} = (k+

i )cl.

The containments in (6.13) now show (k1)
cl = (k2)

cl. By Corollary 3.10, this forces k+
1 and k+

2 to
be isomorphic.

In Lemma 5.2 we showed there is an element γ ∈ Γ1 such that λ = λ(γ)b1(γ) satisfies all the
conditions in option (b) of Lemma 4.3 and for which all embeddings of the field k+

1 into Q(λλ) over
Q have the same image, where λλ = `b1(γ). Fixing one such embedding, the field Q(`b1(γ)) is a
non-Galois quartic extension of k+

1 , and the Galois closure F of Q(`b1(γ)) over k+
1 is a dihedral

extension of k+
1 of degree 8. Now Lemma 4.3 forces k1 to be isomorphic to F D where D is the

unique Klein four subgroup of Gal(F/k+
1 ) which does not contain Gal(F/Q(`b1(γ))).

We now use the fact described above that `b1(γ) = `1(γ
′) for some γ′ ∈ Γ2 (see 6.13). Since

we have shown (k1)
+ is isomorphic to (k2)

+, all embeddings of (k2)
+ into Q(`1(γ

′)) = Q(`b1(γ))
have the same image because of condition (b) of Lemma 5.1. This image is the same as that of
(k1)

+ under the embedding discussed above. Running the above arguments through now with Γ2

replacing Γ1, we conclude that `1(γ
′) = `b1(γ) implies k2 is isomorphic to the field F D = k1.

6.2 Proof of Theorem 6.1(b)

We adopt the notations and assumptions of §6.1. By Theorem 6.1(a) we can assume that B1 and
B2 are quaternion division algebras over the same number field k. Let Ri be the set of places of k
which ramify in Bi.

Proposition 6.2 There is an automorphism c′ : k → k such that c′(R1) = R2.

Before proving this Lemma, we note that it implies B1 and B2 are isomorphic as Q-algebras by
Theorem 2.2(iii), so this and Theorem 2.1 will show Theorem 6.1(b).

To begin the proof of Proposition 6.2, note that since the two non-real embeddings of k into C

are taken to each other by complex conjugation, we can apply complex conjugation to the image
of one of the embeddings ρBi

: Bi → Mat2(C) used to define Γi to be able to assume that the ρBi

define the same embedding ρ : k → C.

Lemma 6.3 Suppose that γ1 ∈ Γ1 and γ2 ∈ Γ2 are hyperbolic elements such that the lengths l(γ1)
and l(γ2) are (non-zero) rational multiplies of one another. Define λi = λ(γi) to be the eigenvalue
associated to γi, so that |λi| > 1. Then either k(λ1) = k(λ2) or k(λ2) = k(λ1), and if k(λ1) 6= k(λ2)
then k is stable under complex conjugation.

Proof. By Theorem 2.2(i), k(λn
i ) = k(λi) is quadratic over k for all integers n ≥ 1. Since

l(γi) = ln |λiλi| and l(γ1) and l(γ2) are non-zero rational multiples of one another, we can replace γ1

and γ2 by suitable positive powers of themselves so that the following is true. There is a real number
r > 0 such that λj = reiθj for some θj ∈ R and j = 1, 2. The assumption that k(λ1) 6= k(λ2) implies
there is an automorphism η ∈ Gal(k(λ1, λ2)/k(λ1)) such that η(λ2) = 1/λ2.

Let F be the smallest Galois extension of Q containing k and all Galois conjugates of λ1 and λ2.
Consider a lift τ to F of η. We have

∣

∣

∣

∣

τ(λ2)

τ(λ1)

∣

∣

∣

∣

= |λ1λ2| ·
∣

∣

∣

∣

λ−1
2 τ(λ2)

λ1τ(λ1)

∣

∣

∣

∣

= r2

∣

∣

∣

∣

τ(λ2λ2)

τ(λ1λ1)

∣

∣

∣

∣

= r2

∣

∣

∣

∣

τ(r2)

τ(r2)

∣

∣

∣

∣

= r2.

By considering the Galois conjugates of the λj (see Theorem 2.2(iv)), this implies

|τ(λ2)| = r = 1/|τ(λ1)| and τ(λ1) ∈ {1/λ1, 1/λ1} and τ(λ2) ∈ {λ2, λ2}.
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If τ(λ1) = 1/λ1 then τ(λ1) = λ1 would imply λ1 = 1/λ1 which is impossible since λ1 is not on the
unit circle. Similarly, τ(λ2) 6= λ2 because τ(λ2) = 1/λ2. Hence

τ(λ1) = 1/λ1 and τ(λ2) = λ2.

Therefore
e−2iθ2 = λ2/λ2 = τ(λ2λ2) = τ(r2) = τ(λ1λ1) = λ1/λ1 = e2iθ1

so λ2
2

= r2e−2iθ2 = r2e2iθ1 = λ2
1. Hence Theorem 2.2(i) shows the desired equality of fields

k(λ2) = k(λ2
2
) = k(λ2

1) = k(λ1).
Suppose finally that k(λ1) 6= k(λ2). Then k(λ1) = k(λ2), k(λ1) = k(λ2) and neither λ1 nor

λ2 can be real. By Lemma 2.3, Q(λi) = k(λi) is quadratic over k = Q(λi + 1/λi) for i = 1, 2. If
λ2 +1/λ2 ∈ k = Q(λ2 +1/λ2) then k is stable under complex conjugation. Otherwise λ2 +1/λ2 6∈ k
so

Q(λ1) = k(λ1) = k(λ2) = k(λ2 + 1/λ2) = Q(λ2 + 1/λ2, λ2 + 1/λ2)

is stable under complex conjugation. But then k(λ1) = k(λ2) and k(λ1) = Q(λ1) show

k(λ2) = k(λ1) = Q(λ1, λ1) = Q(λ1) = k(λ1)

contrary to hypothesis. This shows k must be stable under complex conjugation. tu
Proof of Proposition 6.2.

We regard k, B1 and B2 as subalgebras of Mat2(C) via our fixed embedding ρ : k → C and fixed
extensions of this embedding to B1 and B2. Since H3/Γ1 and H3/Γ2 are length commensurable,
for each γ1 ∈ Γ1 − {e} there is an element γ2 ∈ Γ2 − {e} for which the conclusions of Lemma 6.3
hold, and the same is true if Γ1 and Γ2 are interchanged.

Suppose first that for all such pairs γ1 and γ2 one has k(λ1) = k(λ2) in Lemma 6.3. In view
of Theorem 2.2(ii), this implies that the quadratic field extensions of k which embed into B1 are
exactly those which embed into B2. Therefore Theorem 2.2(iii) shows B1 and B2 are isomorphic
over k, so we can let c′ be the identity isomorphism in Proposition 6.2.

For the rest of the proof we assume that there is at least one pair γ1 and γ2 as above such that
k(λ1) = k(λ2) 6= k(λ2). We can also assume R1 6= R2, since otherwise the proof can be completed as
before, with c′ the identity isomorphism. By Lemma 6.3, complex conjugation on C induces an order
two automorphism c′ : k → k. If c′(R1) = R2, then c extends to a Q-automorphism c′ : B1 → B2

by Theorem 2.2(iii), and Proposition 6.2 follows. We therefore assume that c′(R1) 6= R2.
By exchanging B1 and B2 if necessary, we may suppose that |R2| ≥ |R1|. Since c′(R1) 6= R2 6=

R1, we may choose places P ∈ R2 −R1 and Q ∈ R2 − c′(R1). Note that then c′(Q) 6∈ R1.
By Theorem 2.2(ii), a quadratic extension L/k embeds into B1 if and only if no place in R1 splits

in L/k. Since P and c′(Q) do not lie in R1, we may by Theorem 2.2(ii) choose a hyperbolic element
δ ∈ Γ1 with eigenvalue λ(δ) so that P and c′(Q) both split in k(λ(δ)). Since H3/Γ1 and H3/Γ2 are
length commensurable, Lemma 6.3 implies that there is a δ′ ∈ Γ2 with eigenvalue λ(δ′) such that
k(λ(δ′)) = k(λ(δ)) or k(λ(δ′)). If k(λ(δ′)) = k(λ(δ)) then P splits in k(λ(δ′)), which contradicts the
fact that k(λ(δ′)) embeds into B2 over k and P ∈ R2 ramifies in B2. Similarly, if k(λ(δ′)) = k(λ(δ)),
then Q splits in k(λ(δ′)) because c′(Q) splits in k(λ(δ)). This is also false since Q ∈ R2 ramifies in
B2 and k(λ(δ′)) embeds into B2. The contradiction completes the proof of Proposition 6.2. tu
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