MATH 720: HOMEWORK \#1

1. Constructing quaternion and dihedral extensions by class field theory.

This problem has to do with constructing degree 8 quaternion and dihedral extensions using class field theory.

1. Suppose H is a subgroup of finite index in a group G. The transfer homomorphism

$$
\operatorname{Ver}_{G}^{H}: G^{a b} \rightarrow H^{a b}
$$

between the maximal abelian quotients of G and H is defined in the following way. Let T be a set of representatives for the right cosets of H in G, so that $H \backslash G=\{H t: t \in T\}$. If $g \in G$ and $t \in T$, then $t g=h_{g, t} t^{\prime}$ for some $t^{\prime} \in T$ and $h_{g, t} \in H$. Define

$$
\operatorname{Ver}_{G}^{H}(\bar{g})=\bar{h} \quad \text { when } \quad h=\prod_{t \in T} h_{g, t}
$$

where \bar{g} (resp. \bar{h}) is the image of g in $G^{a b}$ (resp. the image of h in $H^{a b}$). Show that if H is cyclic of order 8 and G is a dihedral (resp. quaternion) group of order 8 , then $\operatorname{Ver}_{G}^{H}$ is trivial if G is dihedral, and otherwise $\operatorname{Ver}_{G}^{H}$ is the unique non-trivial homomorphism which has kernel the image of H in $G^{a b}$.
2. Let L / K be a finite extension of global fields. Define $C_{K}=J_{K} / K^{*}$ to be the idele class group of K. Let $K^{a b}$ be the maximal abelian extension of K in some algebraic closure containining L. Two basic properties of the Artin map $\Psi_{K}: C_{K} \rightarrow \operatorname{Gal}\left(K^{a b} / K\right)$ are that the two following two diagrams commute:

in which $\operatorname{res}_{L^{a b} / K^{a b}}$ is induced by restriction, $i_{K / L}$ is induced by the inclusion of K into L and $\operatorname{Ver}_{L / K}$ is the transfer map.

Use this to show that all dihedral and quaternion extensions of K arise from the following construction. Let L / K be a quadratic separable extension, and let $\epsilon_{L}: C_{K} \rightarrow\{ \pm 1\}$ be the unique surjective homomorphism corresponding to L via class field theory. Write $\operatorname{Gal}(L / K)=\{e, \sigma\}$, with σ of order 2. Let $\mu_{4}=\{ \pm 1, \pm \sqrt{-1}\}$ be the group of fourth roots of unity in \mathbb{C}^{*}. A surjective homomorphism $\chi: C_{L} \rightarrow \mu_{4}$ is of dihedral (resp. quaternion) type if:
a. $\chi^{\sigma}=\chi^{-1}$ when $\chi^{\sigma}: C_{L} \rightarrow \mu_{4}$ is defined by $\chi^{\sigma}(j)=\chi(\sigma(j))$ for $j \in C_{L}$
b. The restriction $\left.\chi\right|_{C_{K}}$ of χ to C_{K} via the map $C_{K} \rightarrow C_{L}$ induced by including K into L is trivial (in the dihedral case) or the character ϵ_{L} (in the quaternion case).
Let N be the extension of L which corresponds to the kernel of χ via class field theory over L. Show that N / K is a dihedral (resp. quaternion) extension of degree 8 if χ is of dihedral (resp. quaternion) type, and that all such extensions arise from this construction as L ranges over the quadratic Galois extensions of K. Which pairs (L, χ) give rise to the same N ?
3. The character $\chi: C_{L}=J_{L} / L^{*} \rightarrow \mu_{4}$ then has local components $\chi_{v}: L_{v}^{*} \rightarrow \mu_{4}$ for each place v of L defined by $\chi_{v}\left(j_{v}\right)=\chi\left(\iota_{v}\left(j_{v}\right)\right)$ when $\iota_{v}: L_{v}^{*} \rightarrow C_{L}$ results from the inclusion of L_{v} into J_{L} at the place v followed by the projection $J_{L} \rightarrow C_{L} / L^{*}$.
a. Suppose K is a number field and that K and L have class number 1 . Show that there are exact sequences

$$
1 \rightarrow O_{L}^{*} \rightarrow \prod_{v} O_{v}^{*} \rightarrow C_{L} \rightarrow 1 \quad \text { and } \quad 1 \rightarrow O_{K}^{*} \rightarrow \prod_{w} O_{w}^{*} \rightarrow C_{K} \rightarrow 1
$$

where v and w range over all places of L and K, respectively, including the archimedean places. Conclude from this that to specify a finite order continuous homomorphism $\chi: C_{L} \rightarrow \mathbb{C}^{*}$ it is necessary and sufficient to specify continuous local characters $\chi_{v}^{\prime}: O_{v}^{*} \rightarrow \mathbb{C}^{*}$ which are trivial for almost all v such that $\prod_{v} \chi_{v}^{\prime}$ vanishes on O_{L}^{*}.
b. With the notations of problem (3a), what conditions on the restrictions χ_{v}^{\prime} are equivalent to χ being of dihedral or quaternion type? (Note that by the same reasoning, the character $\epsilon: C_{K} \rightarrow\{ \pm 1\}$ is determined by its restrictions to the multiplicative groups O_{w}^{*} of all places w of K, and that each such O_{w}^{*} embeds naturally into the product of the O_{v}^{*} associated to v over w in L.)
c. Suppose $K=\mathbb{Q}$ and $L=\mathbb{Q}(\sqrt{5})$. Show that there is a quaternion character $\chi: C_{L} \rightarrow$ μ_{4} such that the $\chi_{v}^{\prime}=\chi_{v} \mid O_{v}^{*}$ have the following properties. The character χ_{v}^{\prime} is trivial unless v is the unique place v_{5} over 5 or one of the two first degree places v_{41} and v_{41}^{\prime} over 41. The order of χ_{v}^{\prime} is 2 if $v=v_{5}$ and 4 if $v=v_{41}$ or $v=v_{41}^{\prime}$. Finally, when we use the natural inclusion $K=\mathbb{Q} \rightarrow L$ to identify both $O_{v_{41}}$ and $O_{v_{41}^{\prime}}$ with \mathbb{Z}_{41}, the characters $\chi_{v_{41}}^{\prime}$ and $\chi_{v_{41}^{\prime}}^{\prime}$ are inverses of each other when we view them both as characters of \mathbb{Z}_{41}^{*}.

