MATH 720: HOMEWORK #1

1. CONSTRUCTING QUATERNION AND DIHEDRAL EXTENSIONS BY CLASS FIELD THEORY.

This problem has to do with constructing degree 8 quaternion and dihedral extensions using class field theory.

1. Suppose H is a subgroup of finite index in a group G. The transfer homomorphism

$$\operatorname{Ver}_G^H : G^{ab} \to H^{ab}$$

between the maximal abelian quotients of G and H is defined in the following way. Let T be a set of representatives for the right cosets of H in G, so that $H \setminus G = \{Ht : t \in T\}$. If $g \in G$ and $t \in T$, then $tg = h_{g,t}t'$ for some $t' \in T$ and $h_{g,t} \in H$. Define

$$\operatorname{Ver}_{G}^{H}(\overline{g}) = \overline{h} \quad \text{when} \quad h = \prod_{t \in T} h_{g,t}$$

where \overline{g} (resp. \overline{h}) is the image of g in G^{ab} (resp. the image of h in H^{ab}). Show that if H is cyclic of order 8 and G is a dihedral (resp. quaternion) group of order 8, then $\operatorname{Ver}_{G}^{H}$ is trivial if G is dihedral, and otherwise $\operatorname{Ver}_{G}^{H}$ is the unique non-trivial homomorphism which has kernel the image of H in G^{ab} .

2. Let L/K be a finite extension of global fields. Define $C_K = J_K/K^*$ to be the idele class group of K. Let K^{ab} be the maximal abelian extension of K in some algebraic closure containing L. Two basic properties of the Artin map $\Psi_K : C_K \to \text{Gal}(K^{ab}/K)$ are that the two following two diagrams commute:

(1.1)

$$C_{L} \xrightarrow{\Psi_{L}} \operatorname{Gal}(L^{ab}/L)$$

$$\underset{K \to \mathbb{C}_{K}}{\operatorname{Ver}_{L/K}} \bigvee \qquad \bigvee_{V}^{\operatorname{res}_{Lab}/Kal}$$

$$C_{K} \xrightarrow{\Psi_{L}} \operatorname{Gal}(K^{ab}/K)$$

$$i_{K/L} \bigvee \qquad \bigvee_{V}^{\operatorname{Ver}_{L/K}} \bigvee \qquad \bigvee_{V}^{\operatorname{Ver}_{L/K}}$$

$$C_{L} \xrightarrow{\Psi_{K}} \operatorname{Gal}(L^{ab}/L)$$

in which $\operatorname{res}_{L^{ab}/K^{ab}}$ is induced by restriction, $i_{K/L}$ is induced by the inclusion of K into L and $\operatorname{Ver}_{L/K}$ is the transfer map.

Use this to show that all dihedral and quaternion extensions of K arise from the following construction. Let L/K be a quadratic separable extension, and let $\epsilon_L : C_K \to \{\pm 1\}$ be the unique surjective homomorphism corresponding to L via class field theory. Write $\operatorname{Gal}(L/K) = \{e, \sigma\}$, with σ of order 2. Let $\mu_4 = \{\pm 1, \pm \sqrt{-1}\}$ be the group of fourth roots of unity in \mathbb{C}^* . A surjective homomorphism $\chi : C_L \to \mu_4$ is of dihedral (resp. quaternion) type if:

a.
$$\chi^{\sigma} = \chi^{-1}$$
 when $\chi^{\sigma} : C_L \to \mu_4$ is defined by $\chi^{\sigma}(j) = \chi(\sigma(j))$ for $j \in C_L$

b. The restriction $\chi|_{C_K}$ of χ to C_K via the map $C_K \to C_L$ induced by including K into L is trivial (in the dihedral case) or the character ϵ_L (in the quaternion case).

Let N be the extension of L which corresponds to the kernel of χ via class field theory over L. Show that N/K is a dihedral (resp. quaternion) extension of degree 8 if χ is of dihedral (resp. quaternion) type, and that all such extensions arise from this construction as L ranges over the quadratic Galois extensions of K. Which pairs (L, χ) give rise to the same N?

- **3.** The character $\chi : C_L = J_L/L^* \to \mu_4$ then has local components $\chi_v : L_v^* \to \mu_4$ for each place v of L defined by $\chi_v(j_v) = \chi(\iota_v(j_v))$ when $\iota_v : L_v^* \to C_L$ results from the inclusion of L_v into J_L at the place v followed by the projection $J_L \to C_L/L^*$.
 - a. Suppose K is a number field and that K and L have class number 1. Show that there are exact sequences

$$1 \to O_L^* \to \prod_v O_v^* \to C_L \to 1 \text{ and } 1 \to O_K^* \to \prod_w O_w^* \to C_K \to 1$$

where v and w range over all places of L and K, respectively, including the archimedean places. Conclude from this that to specify a finite order continuous homomorphism $\chi : C_L \to \mathbb{C}^*$ it is necessary and sufficient to specify continuous local characters $\chi'_v : O_v^* \to \mathbb{C}^*$ which are trivial for almost all v such that $\prod_v \chi'_v$ vanishes on O_L^* .

- b. With the notations of problem (3a), what conditions on the restrictions χ'_v are equivalent to χ being of dihedral or quaternion type? (Note that by the same reasoning, the character $\epsilon : C_K \to \{\pm 1\}$ is determined by its restrictions to the multiplicative groups O^*_w of all places w of K, and that each such O^*_w embeds naturally into the product of the O^*_v associated to v over w in L.)
- c. Suppose $K = \mathbb{Q}$ and $L = \mathbb{Q}(\sqrt{5})$. Show that there is a quaternion character $\chi : C_L \to \mu_4$ such that the $\chi'_v = \chi_v | O_v^*$ have the following properties. The character χ'_v is trivial unless v is the unique place v_5 over 5 or one of the two first degree places v_{41} and v'_{41} over 41. The order of χ'_v is 2 if $v = v_5$ and 4 if $v = v_{41}$ or $v = v'_{41}$. Finally, when we use the natural inclusion $K = \mathbb{Q} \to L$ to identify both $O_{v_{41}}$ and $O_{v'_{41}}$ with \mathbb{Z}_{41} , the characters $\chi'_{v_{41}}$ and $\chi'_{v'_{41}}$ are inverses of each other when we view them both as characters of \mathbb{Z}^*_{41} .

(1.3)