MATH 703: HOMEWORK #2

DUE FRIDAY, FEB. 8, 2013

1. Henselizations

This problem completes the proof of the following result discussed in class. Suppose A is a discrete valuation ring with fraction field K and maximal ideal m_A . (In class we took A to be any integral domain which is integrally closed in its fraction field, but the D.V.R. case is simpler.) Don't assume A is complete; for instance, A could be the localization of the ring of integers of a number field at a non-zero prime ideal. Let K^s be a separable closure of K and let B be the integral closure of K^s in K. Let \mathcal{Q} be a prime over m_A in B. Define D to be the decomposition group of \mathcal{Q} inside $G = \operatorname{Gal}(K^s/K)$. Then B^D is the integral closure of A inside the fixed field $(K^s)^D$. Define R to be the localization of B^D at the maximal ideal $B^D \cap \mathcal{Q}$ of B^D under \mathcal{Q} . In class we showed that the natural inclusion $A \to R$ is a local homomorphism (in the sense that the inverse image in A of the maximal ideal m_R of R is m_A), and that R is a Henselian ring. The object of this exercise is to complete the proof that R is in fact the Henselization of A.

1. Suppose $r \in R$, and let L be the field K(r) generated by r over K. Let O_L be the integral closure of A in L. Show that if $Q_L = Q \cap L$ is the prime of O_L under Q, then m_A decomposes in O_L as

$$m_A \cdot O_L = \mathcal{Q}_L \cdot \mathcal{J}_1^{e_1} \cdots \mathcal{J}_s^{e_s}$$

where $s \geq 0$, $Q_L, \mathcal{J}_1, \ldots, \mathcal{J}_s$ are distinct maximal ideals of $O_L, e_i \geq 1$ and the natural homomorphism $A/m_A \to O_L/Q_L$ is an isomorphism.

Hint: One way to do this is to show that the natural homomorphism $\nu : K_{m_A} \to L_{Q_L}$ is an isomorphism when K_{m_A} is the completion of K with respect to the powers of m_A and L_{Q_L} is the completion of L with respect to the powers of Q_L . To show ν is an isomorphism, you could use the normal closure F of L over K inside K^s . Show that D projects to the decomposition group D_F of $Q_F = Q \cap F$ inside H = Gal(F/K), and $L = F^{D_F}$. You can then use the fact proved in class that the decomposition group of a prime ideal in the Galois group of a finite Galois extension can be identified with the Galois group of a suitable extension of completions.

- 2. With the notations of part (1), show that r can be written as $\pi^{a} \alpha / \beta$ where $\pi \in A$ is a uniformizer and $\alpha, \beta \in O_{L}$ are elements for which neither α nor β are in \mathcal{Q}_{L} but α and β are in $\mathcal{J}_{i}^{e_{i}}$ for $i = 1, \ldots, s$.
- 3. With the notations of part (2), let λ be either α or β . Show that to prove R is the Henselization of A, it will suffice to show that λ is a root of a monic polynomial $f(x) \in A[x]$ such that the reduction $\overline{f}(x) \in (A/m_A)[x]$ of $f(x) \mod m_A$ factors as $(x \overline{\lambda})x^m$ for some integer $m \geq 0$, where $\overline{\lambda} \neq 0$ is the image of λ in $R/m_R = A/m_A$. You can use the fact proved in class that the Henselization of A is the intersection of all of the Henselian local subrings of \hat{A} which contain A.
- 4. Complete the proof that R is the Henselization of A by producing a polynomial f(x) as in problem (3) using the action of λ on O_L together with problem #1.

2. Artin's reciprocity law and quadratic reciprocity.

The quadratic reciprocity law for odd rational primes $p \neq q$ is that

$$\binom{p}{q} \cdot \binom{q}{p} = (-1)^{\left(\frac{(p-1)}{2}\frac{(q-1)}{2}\right)}$$

We proved this in class when $p \equiv 1 \mod 4$. Suppose from now on that $p \equiv 3 \mod r$. The object of these exercises is to prove the formula for all odd $q \neq p$.

Let $K = \mathbb{Q}$ and $L = \mathbb{Q}(\sqrt{p})$. The set S of places of K over which L ramifies consists of the non-archimedean places determined by 2 and p. The Artin map

$$\Psi_{L/K}: I_S \to \operatorname{Gal}(L/K)$$

is defined on the group I_S of fractional ideals of K which are prime to all prime ideals associated to non-archimedean places in S. Here $\mathbb{Z}q \in I_S$. One has $\Psi_{L/K}(q\mathbb{Z}) = \Phi(\mathcal{Q}/q\mathbb{Z})$ for any prime \mathcal{Q} of O_L over $q\mathbb{Z}$, where $\Phi(\mathcal{Q}/p\mathbb{Z})$ is the Frobenius automorphism of \mathcal{Q} . As shown in class,

$$\Psi_{L/K}(q\mathbb{Z}) = \binom{p}{q} = \pm 1$$

when we identify $\operatorname{Gal}(L/K)$ with $\{\pm 1\}$. This is because $q\mathbb{Z}$ splits in $L = \mathbb{Q}(\sqrt{p})$ if and only if p is a square mod q, and $\Phi(\mathcal{Q}/q\mathbb{Z})$ is a generator of the decomposition group of \mathcal{Q} in $\operatorname{Gal}(L/K)$.

Artin's reciprocity law says that there is a minimal conductor $\mathcal{M} = (\mathcal{M}_f; w_1, \ldots, w_i)$ in K such that \mathcal{M}_f is a product of positive powers of primes ideals associated to places in S and w_1, \ldots, w_s is the set of real places in S such that $\Psi_{L/K}$ factors through the ray class group $\operatorname{Cl}_{\mathcal{M}}(K)$. Thus $\mathcal{M}_f = 2^a p^b$ for some integers a, b > 0, and s = 0 since the real place of \mathbb{Q} does not ramify in L. The Artin map then defines a surjective homomorphism

$$\Psi_{L/K} : \operatorname{Cl}_{\mathcal{M}}(K) = (\mathbb{Z}/2^a p^b)^* / \{\pm 1\} \to \operatorname{Gal}(L/K) = \{\pm 1\}.$$

- 5. Show that the squares in $(\mathbb{Z}/2^a)^*$ are the residue classes which can be represented by integers which are congruent to 1 mod 8, while the squares in $(\mathbb{Z}/p^b)^*$ contain the residue classes congruent to 1 mod p. Use this to show that because \mathcal{M}_f is minimal, one must have $1 \leq a \leq 3$ and b = 1. Then show that a = 1 is impossible because if a = 1 then the Artin map would factor through the natural homomorphism $\operatorname{Cl}_{\mathcal{M}}(K) \to \operatorname{Cl}_{\mathbb{Z}p^b}(K)$, so that there would be a conductor that did not involve the ramifying prime 2.
- 6. Show that the statement that a = 2 is equivalent to the law of quadratic reciprocity for the prime p and all primes $q \notin \{2, p\}$. (Hint: If a = 2, deduce quadratic reciprocity using the fact that one can compute $\Psi_{L/K}(q\mathbb{Z}) = \binom{p}{q}$ using Artin's theorem together with the fact that $\Psi_{L/K}$ which does not factor through a ray class group of smaller conductor. Conversely, show that if quadratic reciprocity holds, then one must have a = 2 by considering the formula for $\Psi_{L/K}$ which results.)
- 7. To deduce that a = 2 for all $p \equiv 3 \mod 4$, first show that a = 2 when p = 3. This can be done by using a small prime q and the connection with the Artin map above. Conclude that to prove quadratic reciprocity for all $p \equiv 3 \mod 4$ and odd $q \neq p$, it will be enough to consider the case in which neither p or q equals 3.
- 8. To finish the argument, suppose now that neither p nor q equal 3. Then $3p \equiv 1 \mod 4$, so the quadratic extension $L' = \mathbb{Q}(\sqrt{3p})$ does not ramify over 2. Use the Artin map for L'/\mathbb{Q} to show that

$$\binom{3p}{q} = \binom{q}{3} \cdot \binom{q}{p}$$

where $\binom{3p}{q}$ is 1 if 3p is a square mod q and -1 otherwise. Using that $(\mathbb{Z}/q)^*$ is cyclic show that

$$\begin{pmatrix} 3p \\ q \end{pmatrix} = \begin{pmatrix} 3 \\ q \end{pmatrix} \cdot \begin{pmatrix} p \\ q \end{pmatrix}.$$

Use these formulas together with the fact that you have checked quadratic reciprocity when one of the (odd) primes is 3 to complete the proof.