MATH 703: HOMEWORK #2

DUE FRIDAY, FEB. 8, 2013

1. HENSELIZATIONS

This problem completes the proof of the following result discussed in class. Suppose A is a
discrete valuation ring with fraction field K and maximal ideal my4. (In class we took A to be any
integral domain which is integrally closed in its fraction field, but the D.V.R. case is simpler.) Don’t
assume A is complete; for instance, A could be the localization of the ring of integers of a number
field at a non-zero prime ideal. Let K* be a separable closure of K and let B be the integral closure
of K% in K. Let Q be a prime over m4 in B. Define D to be the decomposition group of Q inside
G = Gal(K?®/K). Then BP is the integral closure of A inside the fixed field (K*)”. Define R to
be the localization of BY at the maximal ideal B N Q of BP under Q. In class we showed that
the natural inclusion A — R is a local homomorphism (in the sense that the inverse image in A of
the maximal ideal mg of R is m4), and that R is a Henselian ring. The object of this exercise is to
complete the proof that R is in fact the Henselization of A.

1. Suppose r € R, and let L be the field K (r) generated by r over K. Let Oy, be the integral
closure of A in L. Show that if @, = QNL is the prime of Oy, under Q, then m 4 decomposes
in O, as
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where s > 0, Qr,J1,...,Js are distinct maximal ideals of O, e; > 1 and the natural
homomorphism A/m4 — Or,/Qy is an isomorphism.

Hint: One way to do this is to show that the natural homomorphism v : K,,, — Lg, is an
isomorphism when K, , is the completion of K with respect to the powers of m4 and Lo,
is the completion of L with respect to the powers of Q;. To show v is an isomorphism,
you could use the normal closure F' of L over K inside K®. Show that D projects to the
decomposition group D of QF = QN F inside H = Gal(F/K), and L = FPF. You
can then use the fact proved in class that the decomposition group of a prime ideal in the
Galois group of a finite Galois extension can be identified with the Galois group of a suitable
extension of completions.

2. With the notations of part (1), show that r can be written as 7%/ where 7 € A is a
uniformizer and «, 8 € Of, are elements for which neither o nor g are in Q; but « and
are in J' fori=1,...,s.

3. With the notations of part (2), let A be either o or (. Show that to prove R is the
Henselization of A, it will suffice to show that ) is a root of a monic polynomial f(z) € Alz]
such that the reduction f(x) € (A/ma)[z] of f(z) mod m4 factors as (z — A)z™ for some
integer m > 0, where A\ # 0 is the image of A\ in R/mgr = A/ma. You can use the fact
proved in class that the Henselization of A is the intersection of all of the Henselian local
subrings of A which contain A.

4. Complete the proof that R is the Henselization of A by producing a polynomial f(x) as in
problem (3) using the action of A on Oy, together with problem #1.
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2. ARTIN’S RECIPROCITY LAW AND QUADRATIC RECIPROCITY.

The quadratic reciprocity law for odd rational primes p # ¢ is that

()

We proved this in class when p = 1 mod 4. Suppose from now on that p = 3 mod r. The object of
these exercises is to prove the formula for all odd ¢ # p.

Let K = Q and L = Q(\/p). The set S of places of K over which L ramifies consists of the
non-archimedean places determined by 2 and p. The Artin map

\I]L/K : IS — Gal(L/K)
is defined on the group Ig of fractional ideals of K which are prime to all prime ideals associated

to non-archimedean places in S. Here Zq € Is. One has ¥k (qZ) = ®(Q/qZ) for any prime Q of
Or, over ¢qZ, where ®(Q/pZ) is the Frobenius automorphism of Q. As shown in class,

Uy (gZ) = (5) — 41

when we identify Gal(L/K) with {£1}. This is because ¢Z splits in L = Q(,/p) if and only if p is
a square mod ¢, and ®(Q/qZ) is a generator of the decomposition group of Q in Gal(L/K).

Artin’s reciprocity law says that there is a minimal conductor M = (My; w1, ..., w;) in K such
that My is a product of positive powers of primes ideals associated to places in S and wy, ..., w;
is the set of real places in S such that Wy factors through the ray class group Cla(K). Thus
My = 2¢pb for some integers a,b > 0, and s = 0 since the real place of Q does not ramify in L.
The Artin map then defines a surjective homomorphism

Uy CLu(K) = (Z/2°p) /{£1} — Gal(L/K) = {+1}.

5. Show that the squares in (Z/2%)* are the residue classes which can be reprensted by integers
which are congruent to 1 mod 8, while the squares in (Z/p®)* contain the residue classes
congruent to 1 mod p. Use this to show that because My is minimal, one must have
1 <a<3andb=1. Then show that a = 1 is impossible because if a = 1 then the Artin
map would factor through the natural homomorphism Cly(K) — Clg,:(K), so that there
would be a conductor that did not involve the ramifying prime 2.

6. Show that the statement that a = 2 is equivalent to the law of quadratic reciprocity for the
prime p and all primes ¢ € {2,p}. (Hint: If a = 2, deduce quadratic reciprocity using the fact
that one can compute Vi (¢Z) = (Z) using Artin’s theorem together with the fact that

VU, which does not factor through a ray class group of smaller conductor. Conversely,
show that if quadratic reciprocity holds, then one must have a = 2 by considering the
formula for W /g which results.)

7. To deduce that a = 2 for all p = 3 mod 4, first show that a = 2 when p = 3. This can
be done by using a small prime ¢ and the connection with the Artin map above. Conclude
that to prove quadratic reciprocity for all p = 3 mod 4 and odd ¢ # p, it will be enough to
consider the case in which neither p or ¢ equals 3.

8. To finish the argument, suppose now that neither p nor ¢ equal 3. Then 3p = 1 mod 4, so
the quadratic extension L' = Q(1/3p) does not ramify over 2. Use the Artin map for L'/Q

o ()= (0)- (%)

where (3:) is 1 if 3p is a square mod ¢ and —1 otherwise. Using that (Z/q)* is cyclic show

()-()-()
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Use these formulas together with the fact that you have checked quadratic reciprocity when
one of the (odd) primes is 3 to complete the proof.



