
MATH 703: HOMEWORK #2

DUE FRIDAY, FEB. 8, 2013

1. Henselizations

This problem completes the proof of the following result discussed in class. Suppose A is a
discrete valuation ring with fraction field K and maximal ideal mA. (In class we took A to be any
integral domain which is integrally closed in its fraction field, but the D.V.R. case is simpler.) Don’t
assume A is complete; for instance, A could be the localization of the ring of integers of a number
field at a non-zero prime ideal. Let Ks be a separable closure of K and let B be the integral closure
of Ks in K. Let Q be a prime over mA in B. Define D to be the decomposition group of Q inside
G = Gal(Ks/K). Then BD is the integral closure of A inside the fixed field (Ks)D. Define R to
be the localization of BD at the maximal ideal BD ∩ Q of BD under Q. In class we showed that
the natural inclusion A→ R is a local homomorphism (in the sense that the inverse image in A of
the maximal ideal mR of R is mA), and that R is a Henselian ring. The object of this exercise is to
complete the proof that R is in fact the Henselization of A.

1. Suppose r ∈ R, and let L be the field K(r) generated by r over K. Let OL be the integral
closure of A in L. Show that if QL = Q∩L is the prime of OL under Q, then mA decomposes
in OL as

mA ·OL = QL · J e1
1 · · · J es

s

where s ≥ 0, QL,J1, . . . ,Js are distinct maximal ideals of OL, ei ≥ 1 and the natural
homomorphism A/mA → OL/QL is an isomorphism.

Hint: One way to do this is to show that the natural homomorphism ν : KmA
→ LQL

is an
isomorphism when KmA

is the completion of K with respect to the powers of mA and LQL

is the completion of L with respect to the powers of QL. To show ν is an isomorphism,
you could use the normal closure F of L over K inside Ks. Show that D projects to the
decomposition group DF of QF = Q ∩ F inside H = Gal(F/K), and L = FDF . You
can then use the fact proved in class that the decomposition group of a prime ideal in the
Galois group of a finite Galois extension can be identified with the Galois group of a suitable
extension of completions.

2. With the notations of part (1), show that r can be written as πaα/β where π ∈ A is a
uniformizer and α, β ∈ OL are elements for which neither α nor β are in QL but α and β
are in J ei

i for i = 1, . . . , s.

3. With the notations of part (2), let λ be either α or β. Show that to prove R is the
Henselization of A, it will suffice to show that λ is a root of a monic polynomial f(x) ∈ A[x]
such that the reduction f(x) ∈ (A/mA)[x] of f(x) mod mA factors as (x − λ)xm for some
integer m ≥ 0, where λ 6= 0 is the image of λ in R/mR = A/mA. You can use the fact
proved in class that the Henselization of A is the intersection of all of the Henselian local
subrings of Â which contain A.

4. Complete the proof that R is the Henselization of A by producing a polynomial f(x) as in
problem (3) using the action of λ on OL together with problem #1.
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2. Artin’s reciprocity law and quadratic reciprocity.

The quadratic reciprocity law for odd rational primes p 6= q is that(
p

q

)
·
(
q

p

)
= (−1)

(
(p−1)

2
(q−1)

2

)
We proved this in class when p ≡ 1 mod 4. Suppose from now on that p ≡ 3 mod r. The object of
these exercises is to prove the formula for all odd q 6= p.

Let K = Q and L = Q(
√
p). The set S of places of K over which L ramifies consists of the

non-archimedean places determined by 2 and p. The Artin map

ΨL/K : IS → Gal(L/K)

is defined on the group IS of fractional ideals of K which are prime to all prime ideals associated
to non-archimedean places in S. Here Zq ∈ IS . One has ΨL/K(qZ) = Φ(Q/qZ) for any prime Q of
OL over qZ, where Φ(Q/pZ) is the Frobenius automorphism of Q. As shown in class,

ΨL/K(qZ) =
(
p

q

)
= ±1

when we identify Gal(L/K) with {±1}. This is because qZ splits in L = Q(
√
p) if and only if p is

a square mod q, and Φ(Q/qZ) is a generator of the decomposition group of Q in Gal(L/K).
Artin’s reciprocity law says that there is a minimal conductor M = (Mf ;w1, . . . , wi) in K such

that Mf is a product of positive powers of primes ideals associated to places in S and w1, . . . , ws

is the set of real places in S such that ΨL/K factors through the ray class group ClM(K). Thus
Mf = 2apb for some integers a, b > 0, and s = 0 since the real place of Q does not ramify in L.
The Artin map then defines a surjective homomorphism

ΨL/K : ClM(K) = (Z/2apb)∗/{±1} → Gal(L/K) = {±1}.
5. Show that the squares in (Z/2a)∗ are the residue classes which can be reprensted by integers

which are congruent to 1 mod 8, while the squares in (Z/pb)∗ contain the residue classes
congruent to 1 mod p. Use this to show that because Mf is minimal, one must have
1 ≤ a ≤ 3 and b = 1. Then show that a = 1 is impossible because if a = 1 then the Artin
map would factor through the natural homomorphism ClM(K)→ ClZpb(K), so that there
would be a conductor that did not involve the ramifying prime 2.

6. Show that the statement that a = 2 is equivalent to the law of quadratic reciprocity for the
prime p and all primes q 6∈ {2, p}. (Hint: If a = 2, deduce quadratic reciprocity using the fact
that one can compute ΨL/K(qZ) =

(
p
q

)
using Artin’s theorem together with the fact that

ΨL/K which does not factor through a ray class group of smaller conductor. Conversely,
show that if quadratic reciprocity holds, then one must have a = 2 by considering the
formula for ΨL/K which results.)

7. To deduce that a = 2 for all p ≡ 3 mod 4, first show that a = 2 when p = 3. This can
be done by using a small prime q and the connection with the Artin map above. Conclude
that to prove quadratic reciprocity for all p ≡ 3 mod 4 and odd q 6= p, it will be enough to
consider the case in which neither p or q equals 3.

8. To finish the argument, suppose now that neither p nor q equal 3. Then 3p ≡ 1 mod 4, so
the quadratic extension L′ = Q(

√
3p) does not ramify over 2. Use the Artin map for L′/Q

to show that (
3p
q

)
=

(q
3

)
·
(
q

p

)
where

(
3p
q

)
is 1 if 3p is a square mod q and −1 otherwise. Using that (Z/q)∗ is cyclic show

that (
3p
q

)
=

(
3
q

)
·
(
p

q

)
.
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Use these formulas together with the fact that you have checked quadratic reciprocity when
one of the (odd) primes is 3 to complete the proof.


