MATH 703: HOMEWORK \#2

DUE FRIDAY, FEB. 8, 2013

1. Henselizations

This problem completes the proof of the following result discussed in class. Suppose A is a discrete valuation ring with fraction field K and maximal ideal m_{A}. (In class we took A to be any integral domain which is integrally closed in its fraction field, but the D.V.R. case is simpler.) Don't assume A is complete; for instance, A could be the localization of the ring of integers of a number field at a non-zero prime ideal. Let K^{s} be a separable closure of K and let B be the integral closure of K^{s} in K. Let \mathcal{Q} be a prime over m_{A} in B. Define D to be the decomposition group of \mathcal{Q} inside $G=\operatorname{Gal}\left(K^{s} / K\right)$. Then B^{D} is the integral closure of A inside the fixed field $\left(K^{s}\right)^{D}$. Define R to be the localization of B^{D} at the maximal ideal $B^{D} \cap \mathcal{Q}$ of B^{D} under \mathcal{Q}. In class we showed that the natural inclusion $A \rightarrow R$ is a local homomorphism (in the sense that the inverse image in A of the maximal ideal m_{R} of R is m_{A}), and that R is a Henselian ring. The object of this exercise is to complete the proof that R is in fact the Henselization of A.

1. Suppose $r \in R$, and let L be the field $K(r)$ generated by r over K. Let O_{L} be the integral closure of A in L. Show that if $\mathcal{Q}_{L}=\mathcal{Q} \cap L$ is the prime of O_{L} under \mathcal{Q}, then m_{A} decomposes in O_{L} as

$$
m_{A} \cdot O_{L}=\mathcal{Q}_{L} \cdot \mathcal{J}_{1}^{e_{1}} \cdots \mathcal{J}_{s}^{e_{s}}
$$

where $s \geq 0, \mathcal{Q}_{L}, \mathcal{J}_{1}, \ldots, \mathcal{J}_{s}$ are distinct maximal ideals of $O_{L}, e_{i} \geq 1$ and the natural homomorphism $A / m_{A} \rightarrow O_{L} / \mathcal{Q}_{L}$ is an isomorphism.

Hint: One way to do this is to show that the natural homomorphism $\nu: K_{m_{A}} \rightarrow L_{\mathcal{Q}_{L}}$ is an isomorphism when $K_{m_{A}}$ is the completion of K with respect to the powers of m_{A} and $L_{\mathcal{Q}_{L}}$ is the completion of L with respect to the powers of \mathcal{Q}_{L}. To show ν is an isomorphism, you could use the normal closure F of L over K inside K^{s}. Show that D projects to the decomposition group D_{F} of $\mathcal{Q}_{F}=\mathcal{Q} \cap F$ inside $H=\operatorname{Gal}(F / K)$, and $L=F^{D_{F}}$. You can then use the fact proved in class that the decomposition group of a prime ideal in the Galois group of a finite Galois extension can be identified with the Galois group of a suitable extension of completions.
2. With the notations of part (1), show that r can be written as $\pi^{a} \alpha / \beta$ where $\pi \in A$ is a uniformizer and $\alpha, \beta \in O_{L}$ are elements for which neither α nor β are in \mathcal{Q}_{L} but α and β are in $\mathcal{J}_{i}^{e_{i}}$ for $i=1, \ldots, s$.
3. With the notations of part (2), let λ be either α or β. Show that to prove R is the Henselization of A, it will suffice to show that λ is a root of a monic polynomial $f(x) \in A[x]$ such that the reduction $\bar{f}(x) \in\left(A / m_{A}\right)[x]$ of $f(x) \bmod m_{A}$ factors as $(x-\bar{\lambda}) x^{m}$ for some integer $m \geq 0$, where $\bar{\lambda} \neq 0$ is the image of λ in $R / m_{R}=A / m_{A}$. You can use the fact proved in class that the Henselization of A is the intersection of all of the Henselian local subrings of \hat{A} which contain A.
4. Complete the proof that R is the Henselization of A by producing a polynomial $f(x)$ as in problem (3) using the action of λ on O_{L} together with problem \#1.

2. Artin's Reciprocity law and quadratic Reciprocity.

The quadratic reciprocity law for odd rational primes $p \neq q$ is that

$$
\binom{p}{q} \cdot\binom{q}{p}=(-1)^{\left(\frac{(p-1)}{2} \frac{(q-1)}{2}\right)}
$$

We proved this in class when $p \equiv 1 \bmod 4$. Suppose from now on that $p \equiv 3 \bmod r$. The object of these exercises is to prove the formula for all odd $q \neq p$.

Let $K=\mathbb{Q}$ and $L=\mathbb{Q}(\sqrt{p})$. The set S of places of K over which L ramifies consists of the non-archimedean places determined by 2 and p. The Artin map

$$
\Psi_{L / K}: I_{S} \rightarrow \operatorname{Gal}(L / K)
$$

is defined on the group I_{S} of fractional ideals of K which are prime to all prime ideals associated to non-archimedean places in S. Here $\mathbb{Z} q \in I_{S}$. One has $\Psi_{L / K}(q \mathbb{Z})=\Phi(\mathcal{Q} / q \mathbb{Z})$ for any prime \mathcal{Q} of O_{L} over $q \mathbb{Z}$, where $\Phi(\mathcal{Q} / p \mathbb{Z})$ is the Frobenius automorphism of \mathcal{Q}. As shown in class,

$$
\Psi_{L / K}(q \mathbb{Z})=\binom{p}{q}= \pm 1
$$

when we identify $\operatorname{Gal}(L / K)$ with $\{ \pm 1\}$. This is because $q \mathbb{Z}$ splits in $L=\mathbb{Q}(\sqrt{p})$ if and only if p is a square $\bmod q$, and $\Phi(\mathcal{Q} / q \mathbb{Z})$ is a generator of the decomposition group of \mathcal{Q} in $\operatorname{Gal}(L / K)$.

Artin's reciprocity law says that there is a minimal conductor $\mathcal{M}=\left(\mathcal{M}_{f} ; w_{1}, \ldots, w_{i}\right)$ in K such that \mathcal{M}_{f} is a product of positive powers of primes ideals associated to places in S and w_{1}, \ldots, w_{s} is the set of real places in S such that $\Psi_{L / K}$ factors through the ray class group $\mathrm{Cl}_{\mathcal{M}}(K)$. Thus $\mathcal{M}_{f}=2^{a} p^{b}$ for some integers $a, b>0$, and $s=0$ since the real place of \mathbb{Q} does not ramify in L. The Artin map then defines a surjective homomorphism

$$
\Psi_{L / K}: \mathrm{Cl}_{\mathcal{M}}(K)=\left(\mathbb{Z} / 2^{a} p^{b}\right)^{*} /\{ \pm 1\} \rightarrow \operatorname{Gal}(L / K)=\{ \pm 1\}
$$

5. Show that the squares in $\left(\mathbb{Z} / 2^{a}\right)^{*}$ are the residue classes which can be reprensted by integers which are congruent to $1 \bmod 8$, while the squares in $\left(\mathbb{Z} / p^{b}\right)^{*}$ contain the residue classes congruent to $1 \bmod p$. Use this to show that because \mathcal{M}_{f} is minimal, one must have $1 \leq a \leq 3$ and $b=1$. Then show that $a=1$ is impossible because if $a=1$ then the Artin map would factor through the natural homomorphism $\mathrm{Cl}_{\mathcal{M}}(K) \rightarrow \mathrm{Cl}_{\mathbb{Z} p^{b}}(K)$, so that there would be a conductor that did not involve the ramifying prime 2.
6. Show that the statement that $a=2$ is equivalent to the law of quadratic reciprocity for the prime p and all primes $q \notin\{2, p\}$. (Hint: If $a=2$, deduce quadratic reciprocity using the fact that one can compute $\Psi_{L / K}(q \mathbb{Z})=\binom{p}{q}$ using Artin's theorem together with the fact that $\Psi_{L / K}$ which does not factor through a ray class group of smaller conductor. Conversely, show that if quadratic reciprocity holds, then one must have $a=2$ by considering the formula for $\Psi_{L / K}$ which results.)
7. To deduce that $a=2$ for all $p \equiv 3 \bmod 4$, first show that $a=2$ when $p=3$. This can be done by using a small prime q and the connection with the Artin map above. Conclude that to prove quadratic reciprocity for all $p \equiv 3 \bmod 4$ and odd $q \neq p$, it will be enough to consider the case in which neither p or q equals 3 .
8. To finish the argument, suppose now that neither p nor q equal 3 . Then $3 p \equiv 1 \bmod 4$, so the quadratic extension $L^{\prime}=\mathbb{Q}(\sqrt{3 p})$ does not ramify over 2. Use the Artin map for L^{\prime} / \mathbb{Q} to show that

$$
\binom{3 p}{q}=\binom{q}{3} \cdot\binom{q}{p}
$$

where $\binom{3 p}{q}$ is 1 if $3 p$ is a square $\bmod q$ and -1 otherwise. Using that $(\mathbb{Z} / q)^{*}$ is cyclic show that

$$
\binom{3 p}{q}=\binom{3}{q} \cdot\binom{p}{q}
$$

Use these formulas together with the fact that you have checked quadratic reciprocity when one of the (odd) primes is 3 to complete the proof.

