MATH 703: HOMEWORK \#1

DUE WEDNESDAY, JAN. 23, 2013

1. Hensel's Lemma

This problem is about a generalization of Hensel's Lemma to polynomials in two variables. Let K be a p-adic field with integers O_{K} and absolute value $\|: K \rightarrow \mathbb{R}$ normalized so that $\left|\pi_{K}\right|=q^{-1}$ when π_{K} is a uniformizer in O_{K} and $q=\# O_{K} /\left(\pi_{K} O_{K}\right)$. Suppose $f_{1}(x, y), f_{2}(x, y) \in O_{K}[x, y]$ are polynomials in two variables over O_{K}. We then have a polynomial map $K \times K \rightarrow K \times K$ defined by

$$
(x, y) \rightarrow F(x, y)=\left(f_{1}(x, y), f_{2}(x, y)\right) .
$$

Suppose $\left(x_{0}, y_{0}\right) \in O_{K} \times O_{K}$ has the property that

$$
F\left(x_{0}, y_{0}\right) \in\left(\pi_{K} O_{K}\right) \times\left(\pi_{K} O_{K}\right) .
$$

1. State and prove a generalization of the naive version of Hensel's Lemma which will provide a sufficient condition for there to exist $\left(x_{1}, y_{1}\right) \in O_{K} \times O_{K}$ such that

$$
F\left(x_{1}, y_{1}\right)=(0,0) \quad \text { and } \quad\left(x_{1}, y_{1}\right) \equiv\left(x_{0}, y_{0}\right) \quad \bmod \quad\left(\pi_{K} O_{K}\right) \times\left(\pi_{K} O_{K}\right) .
$$

2. Apply your criterion in problem $\# 1$ to the case in which $\left(x_{0}, y_{0}\right)=(1,-1), f_{1}(x, y)=$ $x^{3}+x y+\pi_{K}$ and $f_{2}(x, y)=x^{2}-y^{2}-\pi_{K}$.
3. State and prove a generalization of the sophisticated form of Hensel's Lemma based on Newton's iteration.

2. Extensions of absolute values

Let p be a prime and let $\overline{\mathbb{Q}}_{p}$ be an algebraic closure of \mathbb{Q}_{p}. We will sketch in class a proof that there is a unique non-archimedean absolute value $\left|\left.\right|_{p}: \overline{\mathbb{Q}}_{p} \rightarrow \mathbb{R}\right.$ which extends the usual p-adic absolute value $\left|\left.\right|_{p}: \mathbb{Q}_{p} \rightarrow \mathbb{R}\right.$.
4. Show that if $\alpha \in \overline{\mathbb{Q}}_{p}$ and $\sigma \in \operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ then $|\sigma(\alpha)|_{p}=|\alpha|_{p}$.
5. Suppose that $f(x)=x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0} \in \mathbb{Q}_{p}$ for some $n \geq 2$ and $b_{i} \in \mathbb{Z}_{p}$. If $b_{0} \in \mathbb{Z}_{p}$ and $b_{j} \notin \mathbb{Z}_{p}$ for some $0<j<n$, is it possible that $f(x)$ is irreducible in $\mathbb{Q}_{p}[x]$?

