MATH 702: HOMEWORK \#2

DUE FRIDAY, OCT. 12, 2012 IN TED CHNBURG'S MAILBOX

1. Disjoint extensions with coprime disciminants

This problem generalizes Proposition 17 of Chapter 3 of Lang's "Algebraic Number Theory" book.

Suppose L and N are two finite separable extensions of a field F inside an algebraic closure \bar{F} of F. We will say that L and N are disjoint over F if whenever $\left\{l_{i}\right\}_{i}$ is a basis for L over F and $\left\{w_{j}\right\}_{j}$ is a basis for N over F, the set $\left\{l_{i} w_{j}\right\}_{i, j}$ is a basis for the compositum $L N$ over F.

Let A be a Noetherian subring of F such that $F=\operatorname{Frac}(A)$ and A is integrally closed in F. If T is a field such that $F \subset T \subset L N$, let A_{T} be the integral closure of A in T, and let $D\left(A_{T} / A\right) \subset A$ be the discriminant ideal of A_{T} over A. We will use without further comment the fact that if S is a multiplicatively closed subset of A, then $S^{-1} A_{T}$ is the integral closure of $S^{-1} A$ in T and $D\left(S^{-1} A_{T} / S^{-1} A\right)=S^{-1} D\left(A_{T} / A\right)$.

We will say that A_{L} and A_{N} have coprime discriminants over A if for each prime ideal P of A, either

$$
(A-P)^{-1} D\left(A_{L} / A\right)=(A-P)^{-1} A=A_{P}
$$

or

$$
(A-P)^{-1} D\left(A_{N} / A\right)=(A-P)^{-1} A=A_{P}
$$

The object of this exercise is to show:
Theorem 1.1. If L and N are disjoint finite separable extensions of F, and A_{L} and A_{N} have coprime discriminants over A, then the integral closure $A_{L N}$ of A in $L N$ is the subring $A_{L} \cdot A_{N}$ generated by A_{L} and A_{N}.

1. Show the conclusion of the Theorem will follow if we show

$$
(A-P)^{-1}\left(A_{L} \cdot A_{N}\right)=(A-P)^{-1} A_{L N}
$$

for all primes P of A. Explain why we can then reduce to the case in which A is a local ring and either $D\left(A_{L} / A\right)=A$ or $D\left(A_{N} / A\right)=A$.
2. Suppose A is a local ring and that $D\left(A_{N} / A\right)=A$. Recall that $D\left(A_{N} / A\right)$ is the A-ideal generated by all disciminants $D\left(\left\{w_{j}\right\}_{j}\right)$ of bases $\left\{w_{j}\right\}_{j}$ for N over F such that $\left\{w_{j}\right\}_{j} \subset A_{N}$. Show that there is one such basis $\left\{w_{j}\right\}_{j}$ which spans the same A-module as it's dual basis $\left\{w_{\ell}^{*}\right\}_{\ell}$, and that A_{N} is the direct sum $\oplus_{j} A w_{j}$.
3. Show that if $\left\{w_{j}\right\}_{j}$ is as in problem $\# 2$, then a basis for $L N$ as an L-vector space is given by $\left\{w_{j}\right\}_{j}$. Use $\left\{w_{\ell}^{*}\right\}_{\ell}$ and the trace from $L N$ to L to show that if $\beta=\sum_{j} \beta_{j} w_{j}$ lies in $A_{L N}$ for some $\beta_{j} \in L$, then $\beta_{j} \in A_{L}$. Deduce Theorem 1.1 from this.
4. Show that if L / F and N / F are finite Galois extensions, then L and N are disjoint over F if and only if $L \cap N=F$. Is this still true if we drop the assumption that L / F and N / F are Galois?

2. Isometry classes of trace forms

Suppose V is a finite dimensional vector space over a field and that

$$
\langle,\rangle: V \times V \rightarrow F
$$

is a non-degenerate symmetric pairing. Let $d=\operatorname{dim}_{F}(V)$. There is a basis $\left\{w_{i}\right\}_{i=1}^{d}$ for V over F such that \langle,$\rangle is diagonal with respect to this basis, in the sense that \left\langle w_{i}, w_{j}\right\rangle=0$ if $i \neq j$. (This is a standard result proved by induction on dimension using the orthogonal complement of the space spanned by one non-zero element of V.) Two pairs $(V,\langle\rangle$,$) and \left(V^{\prime},\langle,\rangle^{\prime}\right)$ as above are isometric if there is an F-isomorphism $\psi: V \rightarrow V^{\prime}$ of vector spaces which carries \langle,$\rangle to \langle,\rangle^{\prime}$, in the sense that

$$
\left\langle\psi(m), \psi\left(m_{0}\right)\right\rangle^{\prime}=\left\langle m, m_{0}\right\rangle
$$

for all $m, m_{0} \in V$. Let

$$
d\left(V,\left\{w_{1}, \ldots, w_{d}\right\},\langle,\rangle\right)=\operatorname{det}\left(\left\{\left\langle w_{i}, w_{j}\right\rangle\right\}_{1 \leq i, j \leq d}\right)
$$

be the discriminant of the pairing \langle,$\rangle on V$ relative to a basis $\left\{w_{1}, \ldots, w_{d}\right\}$ of V over F.
5. Show that the class $h_{1}(V,\langle\rangle$,$) of d\left(V,\left\{w_{1}, \ldots, w_{d}\right\},\langle\rangle,\right)$ in the quotient group $F^{*} /\left(F^{*}\right)^{2}$ does not depend on the choice of $\left\{w_{1}, \ldots, w_{d}\right\}$, and is an invariant of the isometry class of ($V,\langle\rangle$,$) .$
6. Suppose F is any field of characteristic not equal to 2 . Let L be a quadratic extension field of F, considered as an F-vector space. Let $\operatorname{Tr}_{L / F}: L \times L \rightarrow F$ be the trace pairing. Show that the isometry class of $\left(L, \operatorname{Tr}_{L / F}\right)$ as a two-dimensional vector space with a quadratic form determines the quadratic extension L / F, in the following sense. If L^{\prime} is another quadratic extension of F and $\left(L, \operatorname{Tr}_{L / F}\right)$ is F-isometric to $\left(L^{\prime}, \operatorname{Tr}_{L^{\prime} / F}\right)$ then there is an isomorphism of fields $L \rightarrow L^{\prime}$ which is the identity on F.
7. Suppose F is a field of characteristic 2 . Is the conclusion of problem $\# 6$ true for separable quadratic extensions L of F ?
Comments: The class $h_{1}(V,\langle\rangle$,$) is called the first Hasse-Witt invariant of (V,\langle\rangle$,$) . There$ is a higher Hasse Witt invariant $h_{i}(V,\langle\rangle$,$) for each integer i \geq 2$. The study of these when $(V,\langle\rangle)=,\left(L, \operatorname{Tr}_{L / \mathbb{Q}}\right)$ for a number field L is an active research area. An excellent book about this is "Cohomological invariants, Witt invariants, and trace forms," by Jean-Pierre Serre, Notes by Skip Garibaldi, Univ. Lecture Ser., 28, Cohomological invariants in Galois cohomology, 1-100, Amer. Math. Soc., Providence, RI, 2003.

3. The Carlitz module

Let p be a prime, $L=\mathbb{F}_{p}(t)$ and $A=\mathbb{F}_{p}[t]$. In class we will discuss the Carlitz module defined by the ring homomorphism $\psi: A \rightarrow L\{\tau\}$ sending t to $t+\tau$, where $L\{\tau\}$ is the twisted polynomial ring for which $\tau \beta=\beta^{p} \tau$ for $\beta \in L$. Then $L\{\tau\}$ acts on an algebraic closure \bar{L} of L by letting $\beta \in L$ act by multiplication by β, and by letting τ send $\alpha \in \bar{L}$ to $\tau(\alpha)=\alpha^{p}$. If $\pi(t) \in A$ is not 0 , define the $\pi(t)$-torsion subgroup of \bar{L} by

$$
\mu_{\pi(t)}=\{\alpha \in \bar{L}: \psi(\pi(t))(\alpha)=0\}
$$

8. Suppose $\pi(t) \in A=\mathbb{F}_{p}[t]$ is monic of degree $d \geq 1$ in t. Show that $\mu_{\pi(t)}$ is the set of all roots of a separable polynomial of degree p^{d}, and that $\mu_{\pi(t)}$ is an additive group.
9. With the notation of problem $\# 5$, show that there is an action of the ring $A / \pi(t) A$ on $\mu_{\pi(t)}$ induced by letting the class of $h(t) \in A$ send $\alpha \in \mu_{\pi(t)}$ to $\psi(h(t))(\alpha)$. Show that this makes $\mu_{\pi(t)}$ into a free rank one module for $A / \pi(t) A$. (To prove freeness, it may be useful to factor $\pi(t)$ into a product of powers of distinct irreducibles $r(t)$ and to consider the size of $\mu_{r(t)} \subset \mu_{\pi(t)}$.)
Comment: This fact corresponds to the statement that multiplicative group of all roots of $x^{n}-1$ in \mathbb{C} is a free rank 1 module for the ring \mathbb{Z} / n.
10. Suppose $\pi(t)$ is a monic irreducible polynomial of degree d. Let $\alpha \in \mu_{\pi(t)}$ be a generator for $\mu_{\pi(t)}$ as a free rank one module for the field $A / A \pi(t)$. Try showing that the integral closure of $B=\mathbb{F}_{p}[t]$ in the field $L\left(\mu_{\pi(t)}\right)$ obtained by adjoining to L all elements of $\mu_{\pi(t)}$ is the ring $B[\alpha]$ generated by B and α. In doing this, it may be useful to construct an analog of the proof that $\mathbb{Z}\left[\zeta_{p}\right]$ is the integral closure of \mathbb{Z} in $\mathbb{Q}\left(\zeta_{p}\right)$.
