
MATH 620: HOMEWORK #5

1. Strong approximation for SL2.

In class we discussed how the Strong Approximation Theorem for SL2(Z) implies that the natural
homomorphism rN : SL2(Z)→ SL2(Z/N) is surjective for all integers N . This exercise gives a direct
proof of this statement.

1. Show that rN is surjective if and only if whenever A ∈ Mat2(Z) is a matrix such that
det(A) ≡ 1 mod N there is a matrix B ∈ SL2(Z) such that A ≡ B mod NZ.

2. Let A be a matrix as in part (1). An elementary row (resp. column) operation on A consists
of adding an integral multiple of a row (resp. column) to a different row (resp. column).
Show that such an operation corresponds to multiplying A on the left (resp. right) by a
matrix in SL2(Z). Use this and the Euclidean algorithm to show that there are matrices
U, V ∈ SL2(Z) such that

UAV =
(
n1 0
0 n2

)
for some integers n1, n2 ∈ Z.

3. Show that(
n2 1

n2 − 1 1

)
·
(
n1 0
0 n2

)
·
(

1 −n2

0 1

)
≡
(

1 0
1− n1 1

)
mod NMat2(Z).

Use this and parts (1) and (2) to show that rN : SL2(Z)→ SL2(Z/N) is surjective.
4. Explain why the above proof applies whenever Z is replaced by an arbitrary Euclidean

domain R with respect to some norm function N : R → Z and NZ is replaced by an
arbitrary non-zero ideal I of R.

Comment The Strong Approximation Theorem holds for SL2 over an arbitrary number field K,
which implies

SL2(OK)→ SL2(OK/J)
is surjective for all non-zero ideals J of the integers OK . The method of proof of the latter fact
given in this problem breaks down, though, if OK is not Euclidean. For some interesting connections
between this topic and hyperbolic geometry, see the paper “Generators and relations for certain
special linear groups” by R. Swan, Advances in Math. 6, 1–77 (1971).

2. Hensel’s Lemma

This problem is about a generalization of Hensel’s Lemma to polynomials in two variables. Let
K be a p-adic field with integers OK and absolute value | | : K → R normalized so that |πK | = q−1

when πK is a uniformizer in OK and q = #OK/(πKOK). Suppose f1(x, y), f2(x, y) ∈ OK [x, y] are
polynomials in two variables over OK . We then have a polynomial map K ×K → K ×K defined
by

(x, y)→ F (x, y) = (f1(x, y), f2(x, y)).
Suppose (x0, y0) ∈ OK ×OK has the property that

F (x0, y0) ∈ (πKOK)× (πKOK).

5. State and prove a generalization of the naive version of Hensel’s Lemma which will provide
a sufficient condition for there to exist (x1, y1) ∈ OK ×OK such that

F (x1, y1) = (0, 0) and (x1, y1) ≡ (x0, y0) mod (πKOK)× (πKOK).
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6. Apply your criterion in (5) to the case in which (x0, y0) = (0, 0), f1(x, y) = x3 + xy + πK

and f2(x, y) = x2 − y2 − h− πK .
7. State and prove a generalization of the sophisticated form of Hensel’s Lemma based on

Newton’s iteration.

3. The Minkowski bound and computations of units

7. Show that the cubic field K = Q(θ) generated by a root θ of x3−x−1 = 0 has class number
1 and unit group {±θn}∞n=1.

8. Show that K = Q(
√

30) has class number two and unit group O∗K = {±(11 + 2
√

30)n}n∈Z.
(Hint: Compute some norms.) Find the continued fraction for

√
30 and verify that this

gives rise to a fundamental unit in O∗K in the way discussed in class.

4. Elliptic curves and class groups

Suppose k is a field of characteristic different from 2 and that g(t) ∈ k[t] is a monic separable
polynomial of degree 3. The polynomial Y 2 − g(t) ∈ k(t)[Y ] is separable and irreducible as a
polynomial in Y . The field L = k(t)[Y ]/(Y 2 − g(t)) is an elliptic function field; it is isomorphic
to the extension of k(t) by the roots y and −y of Y 2 = g(t) in an algebraic closure of k(t). A
problem on an earlier problem set showed that the integral closure of k[t] in L is A = k[t] + k[t]y;
this is not difficult to check using the action of Gal(L/k(t)) = {e, σ} on L. Let C0

F be the set
of discrete valuations of L which are trivial on k. Define v∞ to be element of C0

F such that
v∞(g(t)) = −deg(g(t)) for 0 6= g(t) ∈ k[t].

9. Show that v∞ ramifies in L. Let w∞ : L − 0 → Z be the unique element of C0
F over v∞.

Explain why w∞(a(t) + b(t)y) = max(−2deg(a(t)),−2deg(b(t)) − 3) if a(t) and b(t) are
elements of k[t] which are not both zero. Finally explain why the non-zero elements of A
are exactly those for which w(α) ≥ 0 for all w ∈ C0

F different from w∞.
10. The Riemann Roch Theorem says that if D is a divisor of L, then

dimkH
0(D)− dimkH

0(κ−D) = deg(D) + 1− g(L)

when g(L) is the genus of L and κ is a canonical divisor on L. Recall that H0(T ) = 0 if T is
a divisor of negative degree, since principal divisors have degree 0 and effective divisors have
non-negative degrees. Use problem 9 along with the Riemann-Roch formula for D = cw∞
and c a large positive integer to show that g(L) = 1.

11. Let E2 be the divisor w∞. Explain why the argument discussed in class shows that every
non-zero element of Pic0(L) is represented by a difference E1 − E2 in which E1 6= E2 is an
effective divisor of degree 1. Show that such E1 correspond to solutions (t0, y0) of y2

0 = g(t0)
in which t0, y0 ∈ k. Define the set of such solutions to be the set of points E(k) of the affine
curve E : Y 2 = g(t) over k. (Hint: If w is a valuation of L of degree 1, consider the
restriction of w to k[t].)

12. Show that if E1 and E2 are as in problem 11, then E1 − E2 is not a principal divisor.
To do this, suppose that E1 − E2 = div(f) for some f ∈ L. Show that f ∈ A and that
NormL/k(t)(f) must be a polynomial in t which is either linear constant or linear. Write
f = a(t) + b(t)y for some a(t), b(t) ∈ k[t], and show that no such f exists.

13. Conclude from problems 11 and 12 that Pic0(L) is identified with the union of E(k) with
one point {∞} corresponding to the class of the trivial divisor. This union is the set of
points over k of the projective smooth curve associated to L. Show that Pic0(L) is naturally
isomorphic to the ideal class group of A.

5. The Minkowski bound over function fields.

Suppose q is a prime power, and let Fq be a finite field of order q. Let L = Fq(t) be the rational
function field in one variable t over Fq. Define v∞ to be the discrete valuation on L such that
v∞(g(t)) = −deg(g(t)) for 0 6= g(t) ∈ Fq[t]. Suppose F is a finite separable extension of L. For
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simplicity, we will assume that v∞ splits completely in F ; such F are analogs of finite totally real
extensions of Q. This problem is about a variation on the Minkowski method for bounding the class
number of the integral closure A of Fq[t] in F .

14. Define n = [F : L], and let w1, . . . , wn be discrete valuations of F which extend v∞. Show
that the inclusion L ⊂ F gives rise to an isomorphism of completions Lv∞ → Fwi

for all
i = 1, . . . , n. This identifies Fwi

with the formal power series field Lv∞ = Fq((t−1)). The
valuation ring Owi

of Fwi
is thus identified with Fq[[t−1]].

15. Define a Haar measure µ∞ on Lv∞ = Fq((t−1)) by the requirement that µ∞(Fq[[t−1]]) = 1.
Thus µ(a+ t−bFq[[t−1]]) = q−b for a ∈ Lv∞ and b ∈ Z, since µ is invariant under translation
and additive over unions of disjoint open subsets. Define µ to be the Haar measure on∏n

i=1 Fwi
which is the product of µ∞ on each factor Lwi

≡ Fq((t−1)). Suppose C = (ci,j)
is an invertible n× n matrix whose entries ci,j lie in Fq((t−1)). Show that if U =

∏n
i=1Owi

then µ(Owi
) = 1. Using the identifications in problem 9, show that the image C · U of U

under left multiplication by C is a compact open subset of
∏n

i=1 Fwi
with

µ(C · U) = q−v∞(det(C))

Hints: U and C ·U are finitely generated free modules of rank n for the discrete valuation
ring Fq[[t−1]] = B. By multiplying C by a non-zero scalar which is close to 0 in B show that
it is enough to consider the case in which C has entries in B and C ·U ⊂ U . Show that the
map U → U given by u → Cu induces multiplication by det(C) on the top exterior power
ΛnU of U over B. Then compute det(C)B a different way by applying the fundamental
theorem about finitely generated modules over a P.I.D. to the inclusion of free B-modules
of rank n given by C · U ⊂ U .

16. Identify each Fwi with Fq((t−1)) as in problem 9. Show that with this identification,
X = ⊕n

i=1Fq[t] is a discrete subgroup of Y = ⊕n
i=1Fwi , in the sense that there is an open

neighborhood of each element of X which contains no other element of X. Show that if U
is as in problem 10, then t−1U = ⊕n

i=1t
−1Owi

is a fundamental domain for X, in the sense
that the inclusion t−1U → Y gives a topological isomorphism t−1U → Y/X. Conclude that
µ(Y/X) = µ(t−1U) = q−n, i.e. X has covolume q−n in Y .

17. Explain why the integral closure A of Fq[t] in F is a finitely generated free Fq[t] module
of rank n. Let a1, . . . , an be generators for this module. Let ψ : F → ⊕n

i=1Fwi
be the

natural homomorphism. Define C to be the n× n matrix (ci,j) such that the jth column is
the vector ψ(aj) considered as a column vector when we identify each Fwi

with Fq((t−1)).
Explain why the elements of ψ(A), considered as column vectors, consists of all Fq[t]-linear
combinations of the columns of C. Thus ψ(A) = C · X when X is as in problem 11.
Show that when t−1U is the open subset as in problem 11, then C · t−1U is a fundamental
domain for ψ(A) in Y = ⊕n

i=1Fwi . Conclude from this and problems 10 and 11 that
µ(Y/ψ(A)) = q−v∞(det(C))−n.

18. For C as in problem 12, show that −v∞(det(C)) = deg(Disc(A/Fq[t]))/2, where the degree
of the disciminant ideal Disc(A/Fq[t]) of Fq[t] is defined to be the degree of a monic generator
of this ideal. The formula at the end of problem 12 then becomes

µ(Y/ψ(A)) = qdeg(Disc(A/Fq [t]))/2−n.

If you have seen the Hurwitz formula for covers of curves, try checking that the right hand
side of this formula gives

(5.1) µ(Y/ψ(A)) = q(2g(F )−2)/2

when g(F ) is the genus of the smooth projective curve over Fq with function field F . The
constant q2g(F )−2 is the function field counterpart of the absolute value of the disciminant
of the ring of integers of a number field. The equation (5.1) is the counterpart of the
corresponding formula for totally real number fields.
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19. Suppose S is an open compact subgroup of Y = ⊕n
i=1Fwi . Let T be a finitely generated

Fq[t]-submodule of Y which is co-compact. Show that if µ(S) > µ(Y/T ), then there is a
non-zero element s ∈ S ∩T . Thus S is a function field counterpart of the convex symmetric
subsets which come up in the classical theory of geometry of numbers, and there is no power
of 2 needed in the function field case.

20. Use problems 14 and 15 to show the following counterpart of the classical Minkowski bound
for the ideal classgroup of A. Suppose C is a non-zero integral ideal of A. Prove that there
is a non-zero element x ∈ C such that

(5.2) [A : Ax] ≤ q · q(2g(F )−2)/2[A : C]
Here the index [A : C] is the counterpart of the norm of an integral ideal of the ring
of integers of a number field, q(2g(F )−2)/2 is the counterpart of the square root of the
discriminant of the field, and the Minkowski constant in the “totally real” function field
case becomes simply q. Compare this result to what you can prove using Riemann-Roch.
Hints: Let w1 be a fixed choice of a valuation of F over v∞. Try using a compact open
subset of Y = ⊕n

i=1Fwi
of the form

S = (tcOw1)×
n∏

i=2

Owi

for a well chosen integer c.


