MATH 603: HOMEWORK \#6

THESE PROBLEMS ARE DUE IN TED'S MAILBOX BY 5 P.M. ON MAY 5, 2017.

1. Constructing A_{4} extensions of fields.

This set of exercises has to do with constructing A_{4} extensions N of a field F of characteristic not 2 .

1. Suppose L / F is a cyclic cubic extension of fields of characteristic not equal to 2 . Write $H=\operatorname{Gal}(L / F)=\left\{e, \sigma, \sigma^{2}\right\}$. For $\beta \in L$ define $\operatorname{Norm}_{L / F}(\beta)=\prod_{h \in H} h(\beta)$. Suppose $\beta \in L^{*}$ is not in F or $\left(L^{*}\right)^{2}$, and that $\operatorname{Norm}_{L / F}(\beta)=1$. Show that if ξ_{1} is a root of $X^{2}-\beta$, then the Galois closure of $L\left(\xi_{1}\right)$ over F is an A_{4}-extension N of F. (Hints: If $L\left(\xi_{1}\right)$ were already Galois over F, show $\sigma(\beta) / \beta \in\left(L^{*}\right)^{2}$ and get a contradiction from $\operatorname{Norm}_{L / F}(\beta)=1$.)
2. Suppose $F=\mathbb{Q}$ and $L=\mathbf{Q}\left(\zeta_{7}+\zeta_{7}^{-1}\right)$. Use the cyclotomic theory discussed in class to show that L / F is a cyclic cubic extension. Then show $\beta=\zeta_{7}+\zeta_{7}^{-1}$ has the properties required in problem $\# 1$ to produce an A_{4} extension of \mathbf{Q}. (Hint: Consider the embeddings of L into R.)
3. Suppose $F=F_{q}$ is a finite field of odd order q and that L / F is a cyclic cubic extension. Can there be an element β with the properties in problem \#1? Can you give an alternate proof of your conclusion using what you know about the multiplicative group of L and a canonical generator σ of $\operatorname{Gal}(L / F)$?

2. Kummer Theory.

Suppose L is a field, $n>0$ is prime to the characteristic of L and that L contains a root of unity ζ of order n. Let μ_{n} be the cyclic subgroup of L^{*} generated by ζ. Suppose B is a subgroup of L^{*}. Let L_{B} be the compositum in an algebraic closure of L of all the extensions $L\left(a^{1 / n}\right)$ with $a \in B$. The extension L_{B} / L is Galois; let $G=\operatorname{Gal}\left(L_{B} / L\right)$. The Kummer pairing

$$
G \times\left(\frac{B \cdot\left(L^{*}\right)^{n}}{\left(L^{*}\right)^{n}}\right) \rightarrow \mu_{n}
$$

is defined by

$$
\langle g,[b]\rangle=\frac{g\left(b^{1 / n}\right)}{b^{1 / n}}
$$

for any choice of $n^{t h}$ root $b^{1 / n}$ of $b \in B$ in L_{B}.
4. Suppose L / F is a Galois extension with group $\Gamma=\operatorname{Gal}(L / F)$. Suppose the action of Γ takes B to B. Show that the extension L_{B} is Galois over F. Define $H=\operatorname{Gal}\left(L_{B} / F\right)$. Show that the Kummer pairing is Γ-equivariant, in the following sense. Suppose $\sigma \in H$. Then for $g \in \operatorname{Gal}\left(L_{B} / L\right)$, one has $\sigma g \sigma^{-1} \in G=\operatorname{Gal}\left(L_{B} / L\right)$ and

$$
\left\langle\sigma g \sigma^{-1},[\sigma(b)]\right\rangle=\sigma(\langle g,[b]\rangle) .
$$

Note that in the exact sequence

$$
\{1\} \rightarrow \operatorname{Gal}\left(L_{B} / L\right) \rightarrow \operatorname{Gal}\left(L_{B} / F\right) \rightarrow \operatorname{Gal}(L / F) \rightarrow\{1\}
$$

the group $\operatorname{Gal}\left(L_{B} / L\right)$ is abelian. So $\sigma g \sigma^{-1}$ depends only on g and the image $\tilde{\sigma}$ of σ in $\operatorname{Gal}(L / F)$. This describes the conjugation action of the quotient group $\Gamma=\operatorname{Gal}(L / F)$ of H on the normal abelian subgroup $G=\operatorname{Gal}\left(L_{B} / L\right)$.
5. In class we said that the Kummer pairing gives an isomorphism

$$
G=H o m\left(\frac{B \cdot\left(L^{*}\right)^{n}}{\left(L^{*}\right)^{n}}, \mu_{n}\right)
$$

Show that this is a Γ-equivariant in the following sense. The action of Γ on G is the conjuation action described in problem 9. If M and F are Γ modules, the action of $\gamma \in \Gamma$ on $f \in \operatorname{Hom}(M, N)$ sends f to the homorphism (γf) defined by $(\gamma f)(m)=\gamma\left(f\left(\gamma^{-1} m\right)\right)$ for $m \in M$.
6. Suppose G and Γ are finite of co-prime orders. Show that $\operatorname{Gal}\left(L_{B} / F\right)$ is isomorphic to the semi-direct product of $\Gamma=\operatorname{Gal}(F / L)$ and $G=G a l\left(L_{B} / L\right)$ with conjugation action defined in problems 4 and 5.
7. Suppose L / F is cyclic of degree 3 and that $\operatorname{char}(L)$ does not have characteristic 2 . Show that the A_{4} extensions of F which contain L correspond bijectively to the order 4 subgroups $\left(B \cdot\left(L^{*}\right)^{2}\right) /\left(L^{*}\right)^{2}$ of $L^{*} /\left(L^{*}\right)^{2}$ which are stable under the action of $G a l(L / F)$ and have no non-trivial invariant elements under the action of $\operatorname{Gal}(L / F)$. What kind of extensions of F would one get if you dropped the last condition about invariant elements?

3. Traces and Norms.

Suppose L / F is a finite extension of fields and that $\alpha \in L$. Multiplication by $\alpha \in L$ gives an F-linear transformation $m(\alpha): L \rightarrow L$. Suppose $M(\alpha)$ is the matrix of this linear transformation relative to some basis for L over F. The characteristic polynomial of $M(\alpha)$ is

$$
c_{\alpha}(z)=\operatorname{det}(z \cdot I-M(\alpha))
$$

where I is the identity matrix of size $[L: F] \times[L: F]$. This does not depend on the choice of basis for L over F. The constant term of $c_{\alpha}(z)$ is

$$
c_{\alpha}(0)=(-1)^{[L: F]} \operatorname{det}(M(\alpha))
$$

and the sum $\operatorname{Tr}_{L / F}(\alpha)$ of the diagonal entries of $M(\alpha(z))$ is -1 times the coefficient of $z^{[L: F]-1}$ in $c_{\alpha}(z)$. Here $\operatorname{Tr}_{L / F}(\alpha)$ is the trace of α and $\operatorname{det}(M(\alpha))$ is the norm $\operatorname{Norm}_{L / F}(\alpha)$ of α from L to F.
9. Let

$$
f(x)=\operatorname{Irred}(X, \alpha, F)=x^{d}+b_{d-1} x^{d-1}+\cdots+b_{d}=\prod_{i=1}^{d_{s}}\left(x-\gamma_{i}\right)^{d / d_{s}}
$$

be the irreducible polynomial of α in $F[x]$ where $d_{s}=[F(\alpha): F]_{s}$ is the separable degree of $F(\alpha)$ over $F,\left\{\gamma_{i}\right\}_{i=1}^{d_{s}}$ are the distinct roots of $f(x)$ in an algebraic closure containing L and d / d_{s} is the inseparable degree of $F(\alpha)$ over F. Show that if we make L into an $F[x]$ module by letting x act by multiplication by α, the associated rational canonical form is a block diagonal matrix with the companion matrix of $f(x)$ in each block. How many blocks are there?
10. With the notations of the previous problem, show that

$$
\operatorname{Tr}_{L / F}=-[L: F(\alpha)] b_{d-1}=\left[L: F(\alpha)_{s}\right] \sum_{i=1}^{d_{s}} \gamma_{i}
$$

and

$$
\operatorname{Norm}_{L / F}=(-1)^{[L: F]} b_{0}^{[L: F(\alpha)]}=\left(\prod_{i=1}^{d_{s}} \gamma_{i}\right)^{\left[L: F(\alpha)_{s}\right]}
$$

where $F(\alpha)_{s}$ is the maximal subextension of $F(\alpha)$ which is separable over F.
11. Explain why this definition of the trace and the norm generalizes the ones given for Galois extensions L / F in problems \#17 and \#18 of section 14.2 of Dummit and Foote's book.
12. Show that the trace $\operatorname{Tr}_{L / F}: L \rightarrow F$ is the zero function if and only if L / F is not a separable extension. (You can use the fact that if L / F is a finite extension, the distinct embeddings of L into an algebraic closure \bar{F} of F are \bar{F}-linearly independent.)
13. Suppose $F=\mathbb{Q}, n \geq 1$ is an integer and that L is the cyclotomic field $\mathbb{Q}\left(\zeta_{n}\right)$ generated by a primitive $n^{t h}$ root of unity ζ_{n}. Calculate $\operatorname{Tr}_{L / \mathbb{Q}}\left(\zeta_{n}\right)$ in terms of the factorization $n=$ $p_{1}^{a_{1}} \cdots p_{m}^{a_{m}} \quad$ of n into a product of powers of distinct primes. (Hint: show that you can take $\zeta_{n}=\prod_{i} \zeta_{p_{i}^{a_{i}}}$ and use $\operatorname{Gal}(L / \mathbb{Q})=(\mathbb{Z} / n)^{*}=\prod_{i}\left(\mathbb{Z} / p_{i}^{a_{i}}\right)^{*}$.)

