MATH 603: HOMEWORK #5

DUE IN SEBASTIAN MOORE'S MAILBOX BY FRIDAY, APRIL 7, 2017

1. The primitive element theorem

- 1. Suppose R is a U.F.D. with fraction field F. Let π be an irreducible in R. Let $v_{\pi}: F^* \to \mathbb{Z}$ be the unique discrete valuation such that for all $\alpha \in R \{0\}$, $v_{\pi}(\alpha)$ is the power of π appearing in the factorization of α . Show that if m > 0 is an integer and $\beta = \sum_{i=0}^{m-1} b_i^m \pi^i$ for some $b_i \in F$, then $v_{\pi}(\beta) = 0$ if and only if $v_{\pi}(b_i) \geq 0$ for each i such that $b_i \neq 0$, and $b_0 \neq 0$ satisfies $v_{\pi}(b_0) = 0$.
- 2. Suppose F is an arbitrary field of characteristic p and that F(x,y) is the rational function field over F in two commuting indeterminates x and y. Exhibit explicitly an infinite number of distinct fields L such that $F(x^p, y^p) \subset L \subset F(x, y)$. (Problem # 1 is relevant to one approach to this.)

2. Finite fields.

3. Let \mathbb{F}_q be a finite field of order q and suppose $1 \leq n \in \mathbb{Z}$. Show that the polynomial $x^{q^n} - x \in \mathbb{F}_q[x]$ is the product of all of the irreducible monic polynomials $f(x) \in \mathbb{F}_q[x]$ of degree d as d runs over the divisors of n. For each such d let z(d) be the number of such f(x). Deduce that

$$q^n = \sum_{d|n} z(d)d.$$

The Mobius function $\mu(m)$ of a positive integer m if 1 if m=1, and if m>1 has prime factorization $p_1^{a_1} \cdots p_s^{a_s}$ then

$$\mu(m) = \prod_{i} \mu(p_i^{a_i})$$
 with $\mu(p_i) = -1$ and $\mu(p_i^{a_i}) = 0$ if $a_i > 1$.

Show that

$$\sum_{d|m} \mu(d) = 0 \quad \text{if} \quad m > 1.$$

Deduce that

$$z(n)n = \sum_{m|n} \mu(n/m)q^m.$$

(This is a special case of Mobius inversion.)

- 4. Show that if \mathbb{F}_q is a finite field with q elements, then every element of \mathbb{F}_q is a sum of two squares. For which q is every element of \mathbb{F}_q a square?
- 5. Let A be a finitely generated commutative algebra over a finite field \mathbb{F}_q of order q. Let $X = \operatorname{Spec}(A)$. Let S(X) be the set of all maximal ideals P of A. In this exercise we will take for granted that #A/P is finite and a power of q for each $P \in S(X)$. The zeta function of X is defined to be the formal power series in $q^{-s} = t$ given by

$$\zeta(X,s) = \prod_{P} \frac{1}{1 - (\#A/P)^{-s}}$$

Show that when $A = \mathbb{F}_q[x]$ (so that X is just the affine line over \mathbb{F}_q), one has

$$\zeta(X,s) = \prod_{\pi(x)} \frac{1}{1 - t^{\deg(\pi(x))}}$$

where $\pi(x)$ runs over all of the monic irreducible polynomials in $\mathbb{F}_q[x]$. By expanding the terms on the right side, show that this function can be written as a ratio of polynomials in $\mathbb{Z}[q,t]$, where here q is treated as a variable.

Comments: Calculating $\zeta(X,s)$ for more general X as above is one of the main goals of arithmetic geometry. The zeta function $\zeta(X,s)$ can be viewed as the zeta function of X over \mathbb{F}_q . An active area of research now has to do with what are called "varieties over the field \mathbb{F}_1 with one element." While \mathbb{F}_1 itself does not exist in a literal sense, there are a number of precise definitions of what it means for a variety to be defined over \mathbb{F}_1 . See, for example, the paper "A blueprinted view on \mathbb{F}_1 -geometry" by Oliver Lorscheid. One consequence is that when X does meet the conditions required to be considered as a variety over \mathbb{F}_1 , it will have the zeta function

$$\zeta(X_{\mathbb{F}_1}, s) = \lim_{q \to 1} (q - 1)^{-N(1)} \zeta(X, s)^{-1}$$

when N(1) is the order of the pole at q=1 of $\zeta(X,s)$ when $\zeta(X,s)$ is written as a rational function in q^{-s} . Here $\zeta(X,s)$ on the right is a ratio of polynomials in q and q^{-s} , and we view q and s as real variables when taking the limit. The constant N(1) is to be interpreted as the number of points of X over \mathbb{F}_1 . Try showing $\zeta(X_{\mathbb{F}_1},s)=s-1$ when $X=\mathbb{A}^1=\operatorname{Spec}(\mathbb{F}_q[x])$ as above.

3. Galois Theory.

- 6. Problem 8 of section 14.1 of Dummit and Foote.
- 7. Problem 3 of section 14.2 of Dummit and Foote.
- 8. Problem 16 of section 14.2 of Dummit and Foote.
- 9. Suppose $f(x) \in \mathbf{Q}[x]$ is an irreducible fourth-degree polynomial and that the Galois group of f(x) is the alternating group A_4 . Show that the field $\mathbf{Q}(\alpha)$ obtained by adjoining a root α of f(x) to \mathbf{Q} is a quartic extension which has no subfield L which is quadratic over \mathbf{Q} . Conclude that one cannot construct the point $(1,\alpha)$ in \mathbf{R}^2 by ruler and compass. Use the theory in Dummit and Foote's section 14.6 (or some other method) to construct an f(x) with the above properties.