MATH 603: HOMEWORK #3

DUE IN SEBASTIAN MOORE'S MAILBOX BY 4:00 P.M., FEB. 22

1. RATIONAL AND JORDAN CANONICAL FORMS

1. Find the rational canonical form of the matrix

(1.1)
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 6 \\ 0 & 0 & 5 \end{pmatrix}$$

in $Mat_3(\mathbb{Q})$.

2. Suppose F is a field and $\lambda, \lambda' \in F$. When are the matrices

(1.2)
$$A = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix} \text{ and } B = \begin{pmatrix} \lambda' & 0 & 0 \\ 1 & \lambda' & 0 \\ 0 & 1 & \lambda' \end{pmatrix}$$

conjugate in $GL_3(F)$? Explain your answer.

2. Cohen-Lenstra statistics

Let p be a prime and let [B] be the isomorphism class of a finite abelian p group B. In class we discussed the idea, going back to H. Cohen and H. W. Lenstra, Jr., that if one chooses a finite abelian p-group A "at random," the probability $\mu([B])$ that A will land in the isomorphism class [B] should be proportional to $1/\#\operatorname{Aut}(B)$. Write $\mu([B]) = c/\#\operatorname{Aut}(B)$ for some constant c. Let S be the set of all isomorphism class of finite abelian p-groups. Then

$$\sum_{[B]\in S} \mu([B]) = c \sum_{[B]\in S} \frac{1}{\#\operatorname{Aut}(B)} \quad \text{so} \quad \frac{1}{c} = \sum_{[B]\in S} \frac{1}{\#\operatorname{Aut}(B)}$$

The object of this exercise is to compute c. We will regard A and B as modules for the localization $\mathbb{Z}_{(p)}$ of \mathbb{Z} at $(p) = \mathbb{Z}p$. Note that $\mathbb{Z}_{(p)}$ is a discrete valuation ring, so that it is Euclidean and a P.I.D..

- 0. Show that a finite abelian group C is a $\mathbb{Z}_{(p)}$ -module if and only if C has order a power of p.
- 1. Suppose A and B are finitely generated $\mathbb{Z}_{(p)}$ -modules, and that A is generated by $\leq n$ elements. Define

$$\operatorname{Hom}_{\mathbb{Z}_{(p)}}^{sur}(A,B) = \{ f \in \operatorname{Hom}_{\mathbb{Z}_{(p)}}(A,B) : f \text{ is surjective} \}$$

$$\lambda_n(A) = \#\{N \subset \mathbb{Z}_{(p)}^n : [\mathbb{Z}_{(p)}^n/N] = [A]\} \text{ if } A \text{ is finite}$$

(2.1)
$$s_n(A) = \# \operatorname{Hom}_{\mathbb{Z}_{(p)}}^{sur}(\mathbb{Z}_{(p)}^n, A)$$
 if A is finite

Show that $#\operatorname{Aut}(A) \cdot \lambda_n(A) = s_n(A)$ if A is finite.

2. Suppose A is a finite abelian p group. Then A/pA is a finite vector space over \mathbb{Z}/p ; let $r = \nu(A)$ be the rank of this vector space. Show that for $n \ge \nu(A)$, a homomorphism $f : \mathbb{Z}_{(p)}^n \to A$ is surjective if and only if the induced homomorphism

$$\overline{f}: \frac{\mathbb{Z}_{(p)}^n}{p \cdot \mathbb{Z}_{(p)}^n} \to \frac{A}{pA} \cong (\mathbb{Z}/p)^r$$

is surjective. Conversely, show that if one is given a surjection \overline{f} of this kind, it arises from a surjection $f: \mathbb{Z}_{(p)}^n \to A$. Show that in this case, if $g: \mathbb{Z}_{(p)}^n \to A$ is any other homomorphism for which $\overline{g} = \overline{f}$, then g = f + h for a unique homomorphism $h \in \operatorname{Hom}_{\mathbb{Z}_{(p)}}(\mathbb{Z}_{(p)}^n, pA)$. Show that the number of such h is $(\#pA)^n$.

3. Show that the elements of $\operatorname{Hom}^{surj}((\mathbb{Z}/p)^n, (\mathbb{Z}/p)^r)$ can be identified with $r \times n$ matrices with entries in \mathbb{Z}/p with column rank r, in the sense that the span of the columns has dimension r over \mathbb{Z}/p . By picking r linearly independent columns, show these matrices are exactly the ones with row rank r. Then show that with the hypotheses of problem # 2, one has

$$s_n(A) = \left(\# \operatorname{Hom}_{\mathbb{Z}_{(p)}}^{surj}((\mathbb{Z}/p)^n, (\mathbb{Z}/p)^r) \right) \cdot \left(\# \operatorname{Hom}(\mathbb{Z}_{(p)}^n, pA) \right)$$
$$= (p^n - 1) \cdot (p^n - p) \cdots (p^n - p^{r-1}) \cdot (\# pA)^n$$
$$= (\# A)^n \frac{(q)_n}{(q)_{n-r}}$$

where for $i \ge 0$,

$$q = p^{-1}$$
 and $(q)_i = \prod_{j=1}^i (1 - q^j)$ and $r = \nu(A)$.

4. Let T(n) be the set of all isomorphism classes [M] of finite abelian p groups for which $\nu(M) = n$, i.e. for which the minimal number of generators for M is n. Define

$$S(n) = \sum_{[M] \in T(n)} \frac{1}{\# \operatorname{Aut}(M)}$$

so that

$$\frac{1}{c} = \sum_{\text{all }[M]} \frac{1}{\# \text{Aut}(M)} = \sum_{n=0}^{\infty} S(n).$$

Use problem 2 to show that

$$S(n) = \sum_{U \subset p\mathbb{Z}_{(p)}^n} s_n (\mathbb{Z}_{(p)}^n / U)^{-1}$$

when $s_n(A)$ is defined as in (2.1) and U runs over all finite index subsets of $p\mathbb{Z}^n_{(p)}$. Then use (2.2) to show

$$S(n) = \sum_{U \subset p\mathbb{Z}^n_{(p)}} [\mathbb{Z}^n_{(p)} : U]^{-n} \frac{1}{(q)_n} = \frac{q^{n^2}}{(q)_n} \zeta(\mathbb{Z}^n_{(p)}, n)$$

Here

(2.3)

$$\zeta(\mathbb{Z}^n_{(p)},s) = \sum_U [\mathbb{Z}^n_{(p)}:U]^{-1}$$

is the zeta function considered in homework set #2, where U ranges over all the finite index submodules of $\mathbb{Z}_{(p)}^n$. Recall that that in that homework assignment you showed

$$\zeta(\mathbb{Z}^n_{(p)}, n) = \prod_{j=0}^{n-1} (1 - p^{j-n})^{-1}.$$

(2.2)

5. Deduce that

$$\frac{1}{c} = \sum_{\text{all } [M]} \frac{1}{\# \text{Aut}(M)} = \sum_{n=0}^{\infty} \frac{q^{n^2}}{(q)_n^2}$$

Extra Credit Show that $\frac{1}{c}$ in problem #5 equals

 $\frac{1}{c} = \frac{1}{(q)_{\infty}} = \frac{1}{\prod_{j=1}^{\infty} (1-q^j)}.$

3. Fine moduli spaces

Let \mathcal{C} be a full subcategory of the category of all Noetherian affine schemes $\operatorname{Spec}(A)$ over a ring R. Here A is a Noetherian R-algebra, the morphisms $\tau : \operatorname{Spec}(A) \to \operatorname{Spec}(A')$ correspond to R-algebra homomorphisms $A' \to A$. The condition that \mathcal{C} is full means that if $\operatorname{Spec}(A)$ and $\operatorname{Spec}(A')$ are objects in \mathcal{C} then all scheme morphisms τ between them over R are morphisms in \mathcal{C} .

A set valued contravariant functor $\mathcal{L} : \mathcal{C} \to \text{Sets}$ has an affine fine moduli scheme Spec(D) if Dis an R-algebra and there is an isomorphism of functors between \mathcal{L} and the functor which sends $\text{Spec}(A) \in \text{Objects}(\mathcal{C})$ to the set $\text{Mor}_R(\text{Spec}(A), \text{Spec}(D))$ of all R-scheme morphisms from Spec(A)to Spec(D).

- 1. Suppose A and A' are R-algebras. Let $A \oplus A'$ be their direct sum. Show that $\text{Spec}(A \oplus A')$ is the disjoint union of Spec(A) and Spec(A'). Show if B is an R-algebra which is an integral domain, the morphisms from Spec(B) to $\text{Spec}(A \oplus A')$ are the disjoint union of the morphisms from Spec(B) to Spec(A'), respectively. (Hint: Consider the orthogonal idempotents (0, 1) and (1, 0) in $A \oplus A'$). Can you drop the condition that B is an integral domain?
- 2. Suppose R is a field F and that L is a field containing F. The affine space of dimension n over F is the scheme $\mathbb{A}_F^n = \operatorname{Spec}(F[x_1, \ldots, x_n])$ in which x_1, \ldots, x_n are commuting indeterminates. Show that the set $\operatorname{Mor}_F(\operatorname{Spec}(L), \mathbb{A}_F^n)$ of F-morphisms from $\operatorname{Spec}(L)$ to \mathbb{A}_F^n is identified with the set of n-tuples z_1, \ldots, z_n of elements of L.
- 3. Let R be a field F, and let C be the category of affine schemes over F of the form Spec(L) for some field L containing F. Fix an integer $d \geq 1$. Define $\mathcal{L} : \mathcal{C} \to \text{Sets}$ to be the contravariant functor which sends Spec(L) to the set of isomorphism classes [(V,T)], where V is a d-dimensional vector space over L and $T : V \to V$ is an L-linear map. Here another pair (V',T') defines the same isomorphism class [(V',T')] = [(V,T)] if there is an L-linear isomorphism $V \to V'$ which carries T to T'. Show that \mathcal{L} has a fine moduli scheme which is a disjoint union of affine spaces.

(Hint: Show that if $a_1(x), \ldots, a_n(x)$ are monic polynomials in L[x] with $a_1(x)|\cdots|a_n(x)$, then there are unique monic polynomials $c_i(x)$ for $i = 1, \ldots, n-1$ such that $a_{i+1}(x) = a_i(x)c_i(x)$. Now consider the coefficients of $a_1(x)$ and $c_i(x)$ for $i = 1, \ldots, n-1$.)