MATH 603: HOMEWORK \#3

DUE IN SEBASTIAN MOORE'S MAILBOX BY 4:00 P.M., FEB. 22

1. Rational and Jordan canonical forms

1. Find the rational canonical form of the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 0 \tag{1.1}\\
0 & 3 & 6 \\
0 & 0 & 5
\end{array}\right)
$$

in $\operatorname{Mat}_{3}(\mathbb{Q})$.
2. Suppose F is a field and $\lambda, \lambda^{\prime} \in F$. When are the matrices

$$
A=\left(\begin{array}{ccc}
\lambda & 1 & 0 \tag{1.2}\\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc}
\lambda^{\prime} & 0 & 0 \\
1 & \lambda^{\prime} & 0 \\
0 & 1 & \lambda^{\prime}
\end{array}\right)
$$

conjugate in $\mathrm{GL}_{3}(F)$? Explain your answer.

2. Cohen-Lenstra statistics

Let p be a prime and let $[B]$ be the isomorphism class of a finite abelian p group B. In class we discussed the idea, going back to H. Cohen and H. W. Lenstra, Jr., that if one chooses a finite abelian p-group A "at random," the probability $\mu([B])$ that A will land in the isomorphism class $[B]$ should be proportional to $1 / \# \operatorname{Aut}(B)$. Write $\mu([B])=c / \# \operatorname{Aut}(B)$ for some constant c. Let S be the set of all isomorphism class of finite abelian p-groups. Then

$$
\sum_{[B] \in S} \mu([B])=c \sum_{[B] \in S} \frac{1}{\# \operatorname{Aut}(B)} \quad \text { so } \quad \frac{1}{c}=\sum_{[B] \in S} \frac{1}{\# \operatorname{Aut}(B)}
$$

The object of this exercise is to compute c. We will regard A and B as modules for the localization $\mathbb{Z}_{(p)}$ of \mathbb{Z} at $(p)=\mathbb{Z} p$. Note that $\mathbb{Z}_{(p)}$ is a discrete valuation ring, so that it is Euclidean and a P.I.D.

0 . Show that a finite abelian group C is a $\mathbb{Z}_{(p)}$-module if and only if C has order a power of p.

1. Suppose A and B are finitely generated $\mathbb{Z}_{(p)}$-modules, and that A is generated by $\leq n$ elements. Define

$$
\operatorname{Hom}_{\mathbb{Z}_{(p)}}^{\text {sur }}(A, B)=\left\{f \in \operatorname{Hom}_{\mathbb{Z}_{(p)}}(A, B): f \text { is surjective }\right\}
$$

$$
\lambda_{n}(A)=\#\left\{N \subset \mathbb{Z}_{(p)}^{n}:\left[\mathbb{Z}_{(p)}^{n} / N\right]=[A]\right\} \quad \text { if } \quad A \quad \text { is finite }
$$

$$
\begin{equation*}
s_{n}(A)=\# \operatorname{Hom}_{\mathbb{Z}_{(p)}}^{\text {sur }}\left(\mathbb{Z}_{(p)}^{n}, A\right) \quad \text { if } \quad A \quad \text { is finite. } \tag{2.1}
\end{equation*}
$$

Show that \# $\operatorname{Aut}(A) \cdot \lambda_{n}(A)=s_{n}(A)$ if A is finite.
2. Suppose A is a finite abelian p group. Then $A / p A$ is a finite vector space over \mathbb{Z} / p; let $r=\nu(A)$ be the rank of this vector space. Show that for $n \geq \nu(A)$, a homomorphism $f: \mathbb{Z}_{(p)}^{n} \rightarrow A$ is surjective if and only if the induced homomorphism

$$
\bar{f}: \frac{\mathbb{Z}_{(p)}^{n}}{p \cdot \mathbb{Z}_{(p)}^{n}} \rightarrow \frac{A}{p A} \cong(\mathbb{Z} / p)^{r}
$$

is surjective. Conversely, show that if one is given a surjection \bar{f} of this kind, it arises from a surjection $f: \mathbb{Z}_{(p)}^{n} \rightarrow A$. Show that in this case, if $g: \mathbb{Z}_{(p)}^{n} \rightarrow A$ is any other homomorphism for which $\bar{g}=\bar{f}$, then $g=f+h$ for a unique homomorphism $h \in \operatorname{Hom}_{\mathbb{Z}_{(p)}}\left(\mathbb{Z}_{(p)}^{n}, p A\right)$. Show that the number of such h is $(\# p A)^{n}$.
3. Show that the elements of $\operatorname{Hom}^{\text {surj }}\left((\mathbb{Z} / p)^{n},(\mathbb{Z} / p)^{r}\right)$ can be identified with $r \times n$ matrices with entries in \mathbb{Z} / p with column rank r, in the sense that the span of the columns has dimension r over \mathbb{Z} / p. By picking r linearly independent columns, show these matrices are exactly the ones with row rank r. Then show that with the hypotheses of problem $\# 2$, one has

$$
\begin{aligned}
s_{n}(A) & =\left(\# \operatorname{Hom}_{\mathbb{Z}}^{(p)}\right. \\
& \left.=\left((\mathbb{Z} / p)^{n},(\mathbb{Z} / p)^{r}\right)\right) \cdot\left(\# \operatorname{Hom}\left(\mathbb{Z}_{(p)}^{n}, p A\right)\right) \\
& =(\# A)^{n} \frac{(q)_{n}}{(q)_{n-r}}
\end{aligned}
$$

where for $i \geq 0$,

$$
q=p^{-1} \quad \text { and } \quad(q)_{i}=\prod_{j=1}^{i}\left(1-q^{j}\right) \quad \text { and } \quad r=\nu(A)
$$

4. Let $T(n)$ be the set of all isomorphism classes $[M]$ of finite abelian p groups for which $\nu(M)=n$, i.e. for which the minimal number of generators for M is n. Define

$$
S(n)=\sum_{[M] \in T(n)} \frac{1}{\# \operatorname{Aut}(M)}
$$

so that

$$
\frac{1}{c}=\sum_{\text {all }[M]} \frac{1}{\# \operatorname{Aut}(M)}=\sum_{n=0}^{\infty} S(n) .
$$

Use problem 2 to show that

$$
S(n)=\sum_{U \subset p \mathbb{Z}_{(p)}^{n}} s_{n}\left(\mathbb{Z}_{(p)}^{n} / U\right)^{-1}
$$

when $s_{n}(A)$ is defined as in (2.1) and U runs over all finite index subsets of $p \mathbb{Z}_{(p)}^{n}$. Then use (2.2) to show

$$
S(n)=\sum_{U \subset p \mathbb{Z}_{(p)}^{n}}\left[\mathbb{Z}_{(p)}^{n}: U\right]^{-n} \frac{1}{(q)_{n}}=\frac{q^{n^{2}}}{(q)_{n}} \zeta\left(\mathbb{Z}_{(p)}^{n}, n\right)
$$

Here

$$
\zeta\left(\mathbb{Z}_{(p)}^{n}, s\right)=\sum_{U}\left[\mathbb{Z}_{(p)}^{n}: U\right]^{-s}
$$

is the zeta function considered in homework set $\# 2$, where U ranges over all the finite index submodules of $\mathbb{Z}_{(p)}^{n}$. Recall that that in that homework assignment you showed

$$
\zeta\left(\mathbb{Z}_{(p)}^{n}, n\right)=\prod_{j=0}^{n-1}\left(1-p^{j-n}\right)^{-1}
$$

5. Deduce that

$$
\frac{1}{c}=\sum_{\text {all }[M]} \frac{1}{\# \operatorname{Aut}(M)}=\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q)_{n}^{2}}
$$

Extra Credit Show that $\frac{1}{c}$ in problem \#5 equals

$$
\frac{1}{c}=\frac{1}{(q)_{\infty}}=\frac{1}{\prod_{j=1}^{\infty}\left(1-q^{j}\right)}
$$

3. Fine moduli spaces

Let \mathcal{C} be a full subcategory of the category of all Noetherian affine schemes $\operatorname{Spec}(A)$ over a ring R. Here A is a Noetherian R-algebra, the morphisms $\tau: \operatorname{Spec}(A) \rightarrow \operatorname{Spec}\left(A^{\prime}\right)$ correspond to R algebra homomorphsms $A^{\prime} \rightarrow A$. The condition that \mathcal{C} is full means that if $\operatorname{Spec}(A)$ and $\operatorname{Spec}\left(A^{\prime}\right)$ are objects in \mathcal{C} then all scheme morphisms τ between them over R are morphisms in \mathcal{C}.

A set valued contravariant functor $\mathcal{L}: \mathcal{C} \rightarrow$ Sets has an affine fine moduli scheme $\operatorname{Spec}(D)$ if D is an R-algebra and there is an isomorphism of functors between \mathcal{L} and the functor which sends $\operatorname{Spec}(A) \in \operatorname{Objects}(\mathcal{C})$ to the set $\operatorname{Mor}_{R}(\operatorname{Spec}(A), \operatorname{Spec}(D))$ of all R-scheme morphisms from $\operatorname{Spec}(A)$ to $\operatorname{Spec}(D)$.

1. Suppose A and A^{\prime} are R-algebras. Let $A \oplus A^{\prime}$ be their direct sum. Show that $\operatorname{Spec}\left(A \oplus A^{\prime}\right)$ is the disjoint union of $\operatorname{Spec}(A)$ and $\operatorname{Spec}\left(A^{\prime}\right)$. Show if B is an R-algebra which is an integral domain, the morphisms from $\operatorname{Spec}(B)$ to $\operatorname{Spec}\left(A \oplus A^{\prime}\right)$ are the disjoint union of the morphisms from $\operatorname{Spec}(B)$ to $\operatorname{Spec}(A)$ and to $\operatorname{Spec}\left(A^{\prime}\right)$, respectively. (Hint: Consider the orthogonal idempotents $(0,1)$ and $(1,0)$ in $\left.A \oplus A^{\prime}\right)$. Can you drop the condition that B is an integral domain?
2. Suppose R is a field F and that L is a field containing F. The affine space of dimension n over F is the scheme $\mathbb{A}_{F}^{n}=\operatorname{Spec}\left(F\left[x_{1}, \ldots, x_{n}\right]\right)$ in which x_{1}, \ldots, x_{n} are commuting indeterminates. Show that the set $\operatorname{Mor}_{F}\left(\operatorname{Spec}(L), \mathbb{A}_{F}^{n}\right)$ of F-morphisms from $\operatorname{Spec}(L)$ to \mathbb{A}_{F}^{n} is identified with the set of n-tuples z_{1}, \ldots, z_{n} of elements of L.
3. Let R be a field F, and let \mathcal{C} be the category of affine schemes over F of the form $\operatorname{Spec}(L)$ for some field L containing F. Fix an integer $d \geq 1$. Define $\mathcal{L}: \mathcal{C} \rightarrow$ Sets to be the contravariant functor which sends $\operatorname{Spec}(L)$ to the set of isomorphism classes $[(V, T)]$, where V is a d-dimensional vector space over L and $T: V \rightarrow V$ is an L-linear map. Here another pair $\left(V^{\prime}, T^{\prime}\right)$ defines the same isomophism class $\left[\left(V^{\prime}, T^{\prime}\right)\right]=[(V, T)]$ if there is an L-linear isormorphism $V \rightarrow V^{\prime}$ which carries T to T^{\prime}. Show that \mathcal{L} has a fine moduli scheme which is a disjoint union of affine spaces.
(Hint: Show that if $a_{1}(x), \ldots, a_{n}(x)$ are monic polynomials in $L[x]$ with $a_{1}(x)|\cdots| a_{n}(x)$, then there are unique monic polynomials $c_{i}(x)$ for $i=1, \ldots, n-1$ such that $a_{i+1}(x)=$ $a_{i}(x) c_{i}(x)$. Now consider the coefficients of $a_{1}(x)$ and $c_{i}(x)$ for $i=1, \ldots, n-1$.)
