MATH 603: HOMEWORK #2

DUE IN SEBASTIAN MOORE'S MAILBOX BY 4:00 P.M. ON FEB. 8

1. Zeta functions and finitely generated modules

In class we discussed the localization $S^{-1}R$ of a commutative R at a multiplicatively closed set S. By convention, if P is a prime ideal of R, what is meant by the localization R_P of R at the prime P is the localization $(R-P)^{-1}R$. Here R-P=S is a multiplicatively closed set because P is a prime ideal.

1. Let $\mathbb{Z}_{(p)}$ be the localization of the integers at the prime ideal $(p) = \mathbb{Z}p$ generated by a prime p. Show that $\mathbb{Z}_{(p)}$ has Euclidean norm $N : \mathbb{Z}_{(p)} \to \mathbb{Z}_{\geq 0}$ defined by N(0) = 0 and

$$N(r/s) = \operatorname{ord}_p(r) - \operatorname{ord}_p(s) = \operatorname{ord}_p(r)$$

if r and s are non-zero integers, s is prime to p, and $\operatorname{ord}_p(r)$ is the highest power of p dividing r. Show that $\operatorname{Spec}(\mathbb{Z}_{(p)})$ has two prime ideals, $\{0\}$ and the maximal ideal $\mathbb{Z}_{(p)}p$.

- 2. Show that every finite abelian p-group A is a quotient of $\mathbb{Z}_{(p)}^n$ for some $n \ge 0$. Let $\nu(A)$ be the smallest such n. Show that $\nu(A)$ is the minimal number of generators for A, and that A/pA is a vector space over \mathbb{Z}/p of dimension $\nu(A)$.
- 3. Let $M = \bigoplus_{i=1}^{n} \mathbb{Z}_{(p)} e_i \cong \mathbb{Z}_{(p)}^{n}$ be a free $\mathbb{Z}_{(p)}$ -module of rank $n \ge 1$ on the basis $\{e_i\}_{i=1}^{n}$. Let $M_1 = \mathbb{Z}_{(p)} e_1$, and let $\psi : M \to M_2 = M/M_1$ be the natural quotient homomorphism, so that M_2 is free of rank n-1. In this problem, all modules are $\mathbb{Z}_{(p)}$ -modules. Suppose U is a submodule of finite index in M.
 - a. Show that $U_1 = U \cap M_1$ has finite *p*-power index in M_1 , and that $\psi(U) = U_2$ has finite *p*-power index in M_2 . Show that U_1 is free of rank 1 over $\mathbb{Z}_{(p)}$ and that U_2 is free of rank n-1 over $\mathbb{Z}_{(p)}$. Then show $[M:U] = [M_1:U_1] \cdot [M_2:U_2]$.
 - b. Suppose U' is another finite index submodule of M such that

$$U'_1 = U \cap M_1 = U_1 = \mathbb{Z}_{(p)} f_1$$
 for the element $f_1 \in M_1$

and

$$V(U') = U'_2 = U_2.$$

Let $\{f_i\}_{i=2}^n$ be a set of elements of U such that $\{\psi(f_i)\}_{i=2}^n$ is a $\mathbb{Z}_{(p)}$ basis for U_2 . Show that there exist $h_i \in M_1$ such that $f_i + h_i \in U'$ and $\{f_1\} \cup \{f_i + h_i\}_{i=2}^n$ is a $\mathbb{Z}_{(p)}$ basis for U'. Then show that the residue class $\overline{h_i}$ of h_i in $M_1/U_1 = M_1/U'_1$ is determined by U' and the choice of the f_i . Finally, show that for any choice of elements $\{h''_i\}_{i=2}^n \subset M_1$, the submodule U'' generated by $\{f_1\} \cup \{f_i + h''_i\}_{i=2}^n$ has the property that $U'' \cap M_1 = U_1$ and $\psi(U'') = U_2$.

- c. Show that with the notations of part (a), there are exactly $[M_1 : U_1]^{(n-1)}$ distinct submodules U' of M such that $U \cap M_1 = M_1$ and $\psi(U) = U'_2 = U_2$.
- d. Let $b(n, p^m)$ for $n \ge 1$ and $m \ge 0$ be the number of submodules U of $M = \mathbb{Z}^n_{(p)}$ such that $[M:U] = p^m$. Use part (c) to show

(1.1)
$$b(n, p^m) = \sum_{i=0}^{n} (p^i)^{(n-1)} \cdot b(n-1, p^{m-i})$$

4. A Dirichlet series is a formula sum $\sum_{n=1}^{\infty} a_n n^{-s}$ for some real numbers a_n . We do not require this series to converge for any complex number s; it just records the coefficients a_n . One can add and multiply Dirichlet series in the natural way. With the notations of problem #3, let $\mathcal{U}(M)$ be the set of finite index submodules $U \subset M = \mathbb{Z}_{(p)}^n$. a. Show that

$$\zeta(M,s) = \sum_{U \in \mathcal{U}(M)} [M:U]^{-s}$$

is a well defined Dirichlet series.

- b. Show that if $M = \mathbb{Z}_p$, so that n = 1, one has $\zeta(M, s) = \sum_{i=0}^{\infty} p^{-is} = (1 p^{-s})^{-1}$
- c. Use problem #3 to show by induction that for n > 1,

$$\zeta(\mathbb{Z}^n_{(p)}, s) = \zeta(\mathbb{Z}^{n-1}_{(p)}, s) \left(\sum_{i=0}^{\infty} p^{i(n-1-s)}\right) = \prod_{j=0}^{n-1} (1-p^{j-s})^{-1}.$$

2. More on torsors

Let B be a commutative ring. In class we discussed the group scheme GL_n over Spec(B). Here $GL_n = Spec(A_n(x))$ when $A_n(x) = B[\{x_{i,j}\}, \frac{1}{\det((x_{i,j}))}]$ with $x = \{x_{i,j}\}$ a set of commuting indeterminates corresponding to the entries of an $n \times n$ matrix.

1. Consider the morphism $m: \operatorname{GL}_n \times_{\operatorname{Spec}(B)} \operatorname{GL}_n \to \operatorname{GL}_n$ corresponding to B-algebra map

$$A_n(x) \to A_n(y) \otimes_B A_n(z)$$

defined by

$$x_{i,j} \to \sum_{k=1}^n y_{i,k} z_{k,j}$$

Show that the morphism m satisfies the natural associative law. Now let C be a commutative B-algebra, and make the natural identifications

 $\operatorname{GL}_n(C) = Mor_{schemes/B}(\operatorname{Spec}(C), \operatorname{GL}_n) = Hom_{B-algebras}(A_n(x), C) = \operatorname{GL}_n(C).$

Show that we have a natural identification

$$Mor_{schemes/B}(\operatorname{Spec}(C), \operatorname{GL}_n \times_{\operatorname{Spec}(B)} \operatorname{GL}_n) = \operatorname{GL}_n(C) \times \operatorname{GL}_n(C)$$

and that composing such morphisms with m corresponds to the matrix multiplication map

$$\operatorname{GL}_n(C) \times \operatorname{GL}_n(C) \to \operatorname{GL}_n(C).$$

- 2. What should be the identify morphism $e : \operatorname{Spec}(B) \to \operatorname{GL}_n$ and the inverse morphism $u : \operatorname{GL}_n \to \operatorname{GL}_n$ associated to the natural group scheme structure of GL_n ? You don't need to verify that these have the right properties.
- 3. Suppose n = 2. How would you define the group SO(2) of 2×2 orthogonal matrices of determinant 1 over B as a subgroup scheme of GL₂?
- 4. Suppose that B is a field F, and that $c \in F \{0\}$. Consider the affine scheme

$$X_b = \text{Spec}(T_b)$$
 with $T_b = [x, y]/(x^2 + y^2 - c)$.

Show that for all extension fields L of F, the points

$$X_b(L) = Mor_{schemes}(Spec(L), X_b)) = Hom_{F-algebras}(T_b, L)$$

of X_b over L correspond to pairs $(\alpha, \beta) \in L^2$ such that $\alpha^2 + \beta^2 = c$.

5. Show that there is an action of SO(2) on X_b over B = F defined by a morphism

$$SO(2) \times X_b \to X_b$$

which has the natural effect on points over $L \supset F$, namely it corresponds to the left multiplcation action on SO(2)(L) on column vectors $(\alpha, \beta)^{transpose} \in L^2$ such that $\alpha^2 + \beta^2 = c$. 6. Suppose $B = F = \mathbb{R}$ and c = -1 in problem # 5. Show that if one base changes to the algebraic closure $\overline{F} = \mathbb{C}$, where is an isomorphism

$$\psi_{\mathbb{C}}: \mathbb{C} \otimes_{\mathbb{R}} X_b = \operatorname{Spec}(\mathbb{C} \otimes_{\mathbb{R}} T_b) \to \mathbb{C} \otimes_{\mathbb{R}} SO(2)$$

which respects the natural left actions of $\mathbb{C} \otimes_{\mathbb{R}} SO(2)$ and which induces the map

on points over \mathbb{C} . Now show that there are no points in $X_b(\mathbb{R})$, and that there is no isomorphism $\psi_F : X_b \to SO(2)$ defined over $F = \mathbb{R}$. This shows X_b is a non-trivial torsor for SO(2) in this case.