
MATH 603: HOMEWORK #2

DUE IN SEBASTIAN MOORE’S MAILBOX BY 4:00 P.M. ON FEB. 8

1. Zeta functions and finitely generated modules

In class we discussed the localization S−1R of a commutative R at a multiplicatively closed set
S. By convention, if P is a prime ideal of R, what is meant by the localization RP of R at the
prime P is the localization (R−P )−1R. Here R−P = S is a multiplicatively closed set because P
is a prime ideal.

1. Let Z(p) be the localization of the integers at the prime ideal (p) = Zp generated by a prime
p. Show that Z(p) has Euclidean norm N : Z(p) → Z≥0 defined by N(0) = 0 and

N(r/s) = ordp(r)− ordp(s) = ordp(r)

if r and s are non-zero integers, s is prime to p, and ordp(r) is the highest power of p
dividing r. Show that Spec(Z(p)) has two prime ideals, {0} and the maximal ideal Z(p)p.

2. Show that every finite abelian p-group A is a quotient of Zn
(p) for some n ≥ 0. Let ν(A) be

the smallest such n. Show that ν(A) is the minimal number of generators for A, and that
A/pA is a vector space over Z/p of dimension ν(A).

3. Let M = ⊕n
i=1Z(p)ei ∼= Zn

(p) be a free Z(p)-module of rank n ≥ 1 on the basis {ei}ni=1. Let

M1 = Z(p)e1, and let ψ : M → M2 = M/M1 be the natural quotient homomorphism, so
that M2 is free of rank n− 1. In this problem, all modules are Z(p)-modules. Suppose U is
a submodule of finite index in M .

a. Show that U1 = U ∩M1 has finite p-power index in M1, and that ψ(U) = U2 has finite
p-power index in M2. Show that U1 is free of rank 1 over Z(p) and that U2 is free of
rank n− 1 over Z(p). Then show [M : U ] = [M1 : U1] · [M2 : U2].

b. Suppose U ′ is another finite index submodule of M such that

U ′1 = U ∩M1 = U1 = Z(p)f1 for the element f1 ∈M1

and

ψ(U ′) = U ′2 = U2.

Let {fi}ni=2 be a set of elements of U such that {ψ(fi)}ni=2 is a Z(p) basis for U2. Show
that there exist hi ∈M1 such that fi+hi ∈ U ′ and {f1}∪{fi+hi}ni=2 is a Z(p) basis for

U ′. Then show that the residue class hi of hi in M1/U1 = M1/U
′
1 is determined by U ′

and the choice of the fi. Finally, show that for any choice of elements {h′′i }ni=2 ⊂M1,
the submodule U ′′ generated by {f1}∪{fi+h′′i }ni=2 has the property that U ′′∩M1 = U1

and ψ(U ′′) = U2.

c. Show that with the notations of part (a), there are exactly [M1 : U1](n−1) distinct
submodules U ′ of M such that U ∩M1 = M1 and ψ(U) = U ′2 = U2.

d. Let b(n, pm) for n ≥ 1 and m ≥ 0 be the number of submodules U of M = Zn
(p) such

that [M : U ] = pm. Use part (c) to show

(1.1) b(n, pm) =

n∑
i=0

(pi)(n−1) · b(n− 1, pm−i)
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4. A Dirichlet series is a formula sum
∑∞

n=1 ann
−s for some real numbers an. We do not

require this series to converge for any complex number s; it just records the coefficients
an. One can add and multiply Dirichlet series in the natural way. With the notations of
problem #3, let U(M) be the set of finite index submodules U ⊂M = Zn

(p).

a. Show that

ζ(M, s) =
∑

U∈U(M)

[M : U ]−s

is a well defined Dirichlet series.
b. Show that if M = Zp, so that n = 1, one has ζ(M, s) =

∑∞
i=0 p

−is = (1− p−s)−1
c. Use problem #3 to show by induction that for n > 1,

ζ(Zn
(p), s) = ζ(Zn−1

(p) , s)

( ∞∑
i=0

pi(n−1−s)

)
=

n−1∏
j=0

(1− pj−s)−1.

2. More on torsors

Let B be a commutative ring. In class we discussed the group scheme GLn over Spec(B).
Here GLn = Spec(An(x)) when An(x) = B[{xi,j}, 1

det((xi,j))
] with x = {xi,j} a set of commuting

indeterminates corresponding to the entries of an n× n matrix.

1. Consider the morphism m : GLn ×Spec(B) GLn → GLn corresponding to B-algebra map

An(x)→ An(y)⊗B An(z)

defined by

xi,j →
n∑

k=1

yi,kzk,j .

Show that the morphismm satisfies the natural associative law. Now let C be a commutative
B-algebra, and make the natural identifications

GLn(C) = Morschemes/B(Spec(C),GLn) = HomB−algebras(An(x), C) = GLn(C).

Show that we have a natural identification

Morschemes/B(Spec(C),GLn ×Spec(B) GLn) = GLn(C)×GLn(C)

and that composing such morphisms with m corresponds to the matrix multiplication map

GLn(C)×GLn(C)→ GLn(C).

2. What should be the identify morphism e : Spec(B) → GLn and the inverse morphism
u : GLn → GLn associated to the natural group scheme structure of GLn? You don’t need
to verify that these have the right properties.

3. Suppose n = 2. How would you define the group SO(2) of 2 × 2 orthogonal matrices of
determinant 1 over B as a subgroup scheme of GL2?

4. Suppose that B is a field F , and that c ∈ F − {0}. Consider the affine scheme

Xb = Spec(Tb) with Tb = [x, y]/(x2 + y2 − c).

Show that for all extension fields L of F , the points

Xb(L) = Morschemes(Spec(L), Xb)) = HomF−algebras(Tb, L)

of Xb over L correspond to pairs (α, β) ∈ L2 such that α2 + β2 = c.
5. Show that there is an action of SO(2) on Xb over B = F defined by a morphism

SO(2)×Xb → Xb

which has the natural effect on points over L ⊃ F , namely it corresonds to the left multi-
plcation action on SO(2)(L) on column vectors (α, β)transpose ∈ L2 such that α2 + β2 = c.
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6. Suppose B = F = R and c = −1 in problem # 5. Show that if one base changes to the
algebraic closure F = C, where is an isomorphism

ψC : C⊗R Xb = Spec(C⊗R Tb)→ C⊗R SO(2)

which respects the natural left actions of C⊗R SO(2) and which induces the map

(α, β)transpose →

√
−1α −

√
−1β

√
−1β

√
−1α

on points over C. Now show that there are no points in Xb(R), and that there is no
isomorphism ψF : Xb → SO(2) defined over F = R. This shows Xb is a non-trivial torsor
for SO(2) in this case.


