MATH 603: HOMEWORK \#2

DUE IN SEBASTIAN MOORE'S MAILBOX BY 4:00 P.M. ON FEB. 8

1. Zeta functions and finitely generated modules

In class we discussed the localization $S^{-1} R$ of a commutative R at a multiplicatively closed set S. By convention, if P is a prime ideal of R, what is meant by the localization R_{P} of R at the prime P is the localization $(R-P)^{-1} R$. Here $R-P=S$ is a multiplicatively closed set because P is a prime ideal.

1. Let $\mathbb{Z}_{(p)}$ be the localization of the integers at the prime ideal $(p)=\mathbb{Z} p$ generated by a prime p. Show that $\mathbb{Z}_{(p)}$ has Euclidean norm $N: \mathbb{Z}_{(p)} \rightarrow \mathbb{Z}_{\geq 0}$ defined by $N(0)=0$ and

$$
N(r / s)=\operatorname{ord}_{p}(r)-\operatorname{ord}_{p}(s)=\operatorname{ord}_{p}(r)
$$

if r and s are non-zero integers, s is prime to p, and $\operatorname{ord}_{p}(r)$ is the highest power of p dividing r. Show that $\operatorname{Spec}\left(\mathbb{Z}_{(p)}\right)$ has two prime ideals, $\{0\}$ and the maximal ideal $\mathbb{Z}_{(p)} p$.
2. Show that every finite abelian p-group A is a quotient of $\mathbb{Z}_{(p)}^{n}$ for some $n \geq 0$. Let $\nu(A)$ be the smallest such n. Show that $\nu(A)$ is the minimal number of generators for A, and that $A / p A$ is a vector space over \mathbb{Z} / p of dimension $\nu(A)$.
3. Let $M=\oplus_{i=1}^{n} \mathbb{Z}_{(p)} e_{i} \cong \mathbb{Z}_{(p)}^{n}$ be a free $\mathbb{Z}_{(p)}$-module of rank $n \geq 1$ on the basis $\left\{e_{i}\right\}_{i=1}^{n}$. Let $M_{1}=\mathbb{Z}_{(p)} e_{1}$, and let $\psi: M \rightarrow M_{2}=M / M_{1}$ be the natural quotient homomorphism, so that M_{2} is free of rank $n-1$. In this problem, all modules are $\mathbb{Z}_{(p)}$-modules. Suppose U is a submodule of finite index in M.
a. Show that $U_{1}=U \cap M_{1}$ has finite p-power index in M_{1}, and that $\psi(U)=U_{2}$ has finite p-power index in M_{2}. Show that U_{1} is free of rank 1 over $\mathbb{Z}_{(p)}$ and that U_{2} is free of rank $n-1$ over $\mathbb{Z}_{(p)}$. Then show $[M: U]=\left[M_{1}: U_{1}\right] \cdot\left[M_{2}: U_{2}\right]$.
b. Suppose U^{\prime} is another finite index submodule of M such that

$$
U_{1}^{\prime}=U \cap M_{1}=U_{1}=\mathbb{Z}_{(p)} f_{1} \quad \text { for the element } \quad f_{1} \in M_{1}
$$

and

$$
\psi\left(U^{\prime}\right)=U_{2}^{\prime}=U_{2}
$$

Let $\left\{f_{i}\right\}_{i=2}^{n}$ be a set of elements of U such that $\left\{\psi\left(f_{i}\right)\right\}_{i=2}^{n}$ is a $\mathbb{Z}_{(p)}$ basis for U_{2}. Show that there exist $h_{i} \in M_{1}$ such that $f_{i}+h_{i} \in U^{\prime}$ and $\left\{f_{1}\right\} \cup\left\{f_{i}+h_{i}\right\}_{i=2}^{n}$ is a $\mathbb{Z}_{(p)}$ basis for U^{\prime}. Then show that the residue class $\overline{h_{i}}$ of h_{i} in $M_{1} / U_{1}=M_{1} / U_{1}^{\prime}$ is determined by U^{\prime} and the choice of the f_{i}. Finally, show that for any choice of elements $\left\{h_{i}^{\prime \prime}\right\}_{i=2}^{n} \subset M_{1}$, the submodule $U^{\prime \prime}$ generated by $\left\{f_{1}\right\} \cup\left\{f_{i}+h_{i}^{\prime \prime}\right\}_{i=2}^{n}$ has the property that $U^{\prime \prime} \cap M_{1}=U_{1}$ and $\psi\left(U^{\prime \prime}\right)=U_{2}$.
c. Show that with the notations of part (a), there are exactly $\left[M_{1}: U_{1}\right]^{(n-1)}$ distinct submodules U^{\prime} of M such that $U \cap M_{1}=M_{1}$ and $\psi(U)=U_{2}^{\prime}=U_{2}$.
d. Let $b\left(n, p^{m}\right)$ for $n \geq 1$ and $m \geq 0$ be the number of submodules U of $M=\mathbb{Z}_{(p)}^{n}$ such that $[M: U]=p^{m}$. Use part (c) to show

$$
b\left(n, p^{m}\right)=\sum_{i=0}^{n}\left(p^{i}\right)^{(n-1)} \cdot b\left(n-1, p^{m-i}\right)
$$

4. A Dirichlet series is a formula sum $\sum_{n=1}^{\infty} a_{n} n^{-s}$ for some real numbers a_{n}. We do not require this series to converge for any complex number s; it just records the coefficients a_{n}. One can add and multiply Dirichlet series in the natural way. With the notations of problem $\# 3$, let $\mathcal{U}(M)$ be the set of finite index submodules $U \subset M=\mathbb{Z}_{(p)}^{n}$.
a. Show that

$$
\zeta(M, s)=\sum_{U \in \mathcal{U}(M)}[M: U]^{-s}
$$

is a well defined Dirichlet series.
b. Show that if $M=\mathbb{Z}_{p}$, so that $n=1$, one has $\zeta(M, s)=\sum_{i=0}^{\infty} p^{-i s}=\left(1-p^{-s}\right)^{-1}$
c. Use problem $\# 3$ to show by induction that for $n>1$,

$$
\zeta\left(\mathbb{Z}_{(p)}^{n}, s\right)=\zeta\left(\mathbb{Z}_{(p)}^{n-1}, s\right)\left(\sum_{i=0}^{\infty} p^{i(n-1-s)}\right)=\prod_{j=0}^{n-1}\left(1-p^{j-s}\right)^{-1}
$$

2. More on torsors

Let B be a commutative ring. In class we discussed the group scheme GL_{n} over $\operatorname{Spec}(B)$. Here $\mathrm{GL}_{n}=\operatorname{Spec}\left(A_{n}(x)\right)$ when $A_{n}(x)=B\left[\left\{x_{i, j}\right\}, \frac{1}{\operatorname{det}\left(\left(x_{i, j}\right)\right)}\right]$ with $x=\left\{x_{i, j}\right\}$ a set of commuting indeterminates corresponding to the entries of an $n \times n$ matrix.

1. Consider the morphism $m: \mathrm{GL}_{n} \times{ }_{\operatorname{Spec}(B)} \mathrm{GL}_{n} \rightarrow \mathrm{GL}_{n}$ corresponding to B-algebra map

$$
A_{n}(x) \rightarrow A_{n}(y) \otimes_{B} A_{n}(z)
$$

defined by

$$
x_{i, j} \rightarrow \sum_{k=1}^{n} y_{i, k} z_{k, j}
$$

Show that the morphism m satisfies the natural associative law. Now let C be a commutative B-algebra, and make the natural identifications

$$
\operatorname{GL}_{n}(C)=M o r_{\text {schemes } / B}\left(\operatorname{Spec}(C), \mathrm{GL}_{n}\right)=\operatorname{Hom}_{B-\text { algebras }}\left(A_{n}(x), C\right)=\mathrm{GL}_{n}(C)
$$

Show that we have a natural identification

$$
M o r_{\text {schemes } / B}\left(\operatorname{Spec}(C), \mathrm{GL}_{n} \times \operatorname{Spec}(B) \mathrm{GL}_{n}\right)=\mathrm{GL}_{n}(C) \times \mathrm{GL}_{n}(C)
$$

and that composing such morphisms with m corresponds to the matrix multiplication map

$$
\mathrm{GL}_{n}(C) \times \mathrm{GL}_{n}(C) \rightarrow \mathrm{GL}_{n}(C)
$$

2. What should be the identify morphism $e: \operatorname{Spec}(B) \rightarrow \mathrm{GL}_{n}$ and the inverse morphism $u: \mathrm{GL}_{n} \rightarrow \mathrm{GL}_{n}$ associated to the natural group scheme structure of GL_{n} ? You don't need to verify that these have the right properties.
3. Suppose $n=2$. How would you define the group $S O(2)$ of 2×2 orthogonal matrices of determinant 1 over B as a subgroup scheme of GL_{2} ?
4. Suppose that B is a field F, and that $c \in F-\{0\}$. Consider the affine scheme

$$
X_{b}=\operatorname{Spec}\left(T_{b}\right) \quad \text { with } \quad T_{b}=[x, y] /\left(x^{2}+y^{2}-c\right)
$$

Show that for all extension fields L of F, the points

$$
\left.X_{b}(L)=\operatorname{Mor}_{\text {schemes }}\left(\operatorname{Spec}(L), X_{b}\right)\right)=\operatorname{Hom}_{F-a l g e b r a s}\left(T_{b}, L\right)
$$

of X_{b} over L correspond to pairs $(\alpha, \beta) \in L^{2}$ such that $\alpha^{2}+\beta^{2}=c$.
5. Show that there is an action of $S O(2)$ on X_{b} over $B=F$ defined by a morphism

$$
S O(2) \times X_{b} \rightarrow X_{b}
$$

which has the natural effect on points over $L \supset F$, namely it corresonds to the left multiplcation action on $S O(2)(L)$ on column vectors $(\alpha, \beta)^{\text {transpose }} \in L^{2}$ such that $\alpha^{2}+\beta^{2}=c$.
6. Suppose $B=F=\mathbb{R}$ and $c=-1$ in problem $\# 5$. Show that if one base changes to the algebraic closure $\bar{F}=\mathbb{C}$, where is an isomorphism

$$
\psi_{\mathbb{C}}: \mathbb{C} \otimes_{\mathbb{R}} X_{b}=\operatorname{Spec}\left(\mathbb{C} \otimes_{\mathbb{R}} T_{b}\right) \rightarrow \mathbb{C} \otimes_{\mathbb{R}} S O(2)
$$

which respects the natural left actions of $\mathbb{C} \otimes_{\mathbb{R}} S O(2)$ and which induces the map

$$
(\alpha, \beta)^{\text {transpose }} \rightarrow \begin{array}{|l|l|}
\hline \sqrt{-1} \alpha & -\sqrt{-1} \beta \\
\hline \sqrt{-1} \beta & \sqrt{-1} \alpha \\
\hline
\end{array}
$$

on points over \mathbb{C}. Now show that there are no points in $X_{b}(\mathbb{R})$, and that there is no isomorphism $\psi_{F}: X_{b} \rightarrow S O(2)$ defined over $F=\mathbb{R}$. This shows X_{b} is a non-trivial torsor for $S O(2)$ in this case.

